


国际肿瘤学杂志››2025,Vol. 52››Issue (3): 176-179.doi:10.3760/cma.j.cn371439-20240701-00027
收稿日期:2024-07-01修回日期:2024-07-20出版日期:2025-03-08发布日期:2025-04-02通讯作者:岳红云,Email:yhyophthalmologist@163.com基金资助:
Zhang Baihong1, Yue Hongyun2(
)
Received:2024-07-01Revised:2024-07-20Online:2025-03-08Published:2025-04-02Contact:Yue Hongyun,Email:
Supported by:
摘要:
药物递送系统(DDS)可以降低抗肿瘤药物的脱靶效应。抗肿瘤药物DDS的载体主要有纳米微粒、小分子、核酸、多肽和抗体以及细胞,它们通过连接器携载抗肿瘤药物,将药物递送至特异的肿瘤组织和细胞。DDS将推动肿瘤精准医学的发展。
张百红, 岳红云. 抗肿瘤药物递送系统研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 176-179.
Zhang Baihong, Yue Hongyun. Advances in anticancer drug delivery systems[J]. Journal of International Oncology, 2025, 52(3): 176-179.
| [1] | Zhao Z, Ukidve A, Kim J, et al. Targeting strategies for tissue-specific drug delivery[J].Cell,2020,181(1): 151-167. DOI:10.1016/j.cell.2020.02.001. pmid:32243788 |
| [2] | Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies[J].Nat Biomed Eng,2021,5(9): 951-967. DOI:10.1038/s41551-021-00698-w. pmid:33795852 |
| [3] | Nelson BJ, Pané S. Delivering drugs with microrobots[J].Science,2023,382(6675): 1120-1122. DOI:10.1126/science.adh3073. pmid:38060660 |
| [4] | Huayamares SG, Loughrey D, Kim H, et al. Nucleic acid-based drugs for patients with solid tumours[J].Nat Rev Clin Oncol,2024,21(6): 407-427. DOI:10.1038/s41571-024-00883-1. pmid:38589512 |
| [5] | Jiang Y, Lyu Z, Ralahy B, et al. Dendrimer nanosystems for adaptive tumor-assisted drug delivery via extracellular vesicle hijacking[J].Proc Natl Acad Sci U S A,2023,120(7): e2215308120. DOI:10.1073/pnas.2215308120. |
| [6] | Zhang Y, Liu F, Zhang Y, et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery[J].Proc Natl Acad Sci U S A,2023,120(11): e2217734120. DOI:10.1073/pnas.2217734120. |
| [7] | Li F, Yang F, Guan C, et al. Preparation and cytotoxicity evaluation of folic acid-modified YF8-OA self-assembled lipid prodrug nanoparticles[J].Pharm Dev Technol,2023,28(5): 452-459. DOI:10.1080/10837450.2023.2206487. |
| [8] | Abdul Rahman A, Mohd Isa IL, Tofail SAM, et al. Modification of living diatom, Thalassiosira weissflogii, with a calcium precursor through a calcium uptake mechanism: a next generation biomaterial for advanced delivery systems[J].ACS Appl Bio Mater,2024,7(6): 4102-4115. DOI:10.1021/acsabm.4c00431. |
| [9] | Peng X, Tang S, Tang D, et al. Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy[J].Sci Adv,2023,9(23): eadh1736. DOI:10.1126/sciadv.adh1736. |
| [10] | Gwisai T, Mirkhani N, Christiansen MG, et al. Magnetic torque-driven living microrobots for increased tumor infiltration[J].Sci Robot,2022,7(71): eabo0665. DOI:10.1126/scirobotics.abo0665. |
| [11] | Horns F, Martinez JA, Fan C, et al. Engineering RNA export for measurement and manipulation of living cells[J].Cell,2023,186(17): 3642-3658.e32. DOI:10.1016/j.cell.2023.06.013. pmid:37437570 |
| [12] | Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond[J].Nat Rev Drug Discov,2023,22(6): 476-495. DOI:10.1038/s41573-023-00671-z. |
| [13] | Kim J, Lee S, Kim Y, et al. In situ self-assembly for cancer therapy and imaging[J].Nat Rev Mater,2023,8(11): 710-725. DOI:10.1038/s41578-023-00589-3. |
| [14] | Wei L, Li G, Lu T, et al. Functionalized graphene oxide as drug delivery systems for platinum anticancer drugs[J].J Pharm Sci,2021,110(11): 3631-3638. DOI:10.1016/j.xphs.2021.07.009. |
| [15] | Raimondo TM, Reed K, Shi D, et al. Delivering the next generation of cancer immunotherapies with RNA[J].Cell,2023,186(8): 1535-1540. DOI:10.1016/j.cell.2023.02.031. pmid:37059063 |
| [16] | Tsuchida CA, Wasko KM, Hamilton JR, et al. Targeted nonviral delivery of genome editors in vivo[J].Proc Natl Acad Sci U S A,2024,121(11): e2307796121. DOI:10.1073/pnas.2307796121. |
| [17] | Berillo D, Yeskendir A, Zharkinbekov Z, et al. Peptide-based drug delivery systems[J].Medicina (Kaunas),2021,57(11): 1209. DOI:10.3390/medicina57111209. |
| [18] | Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies[J].CA Cancer J Clin,2022,72(2): 165-182. DOI:10.3322/caac.21705. |
| [19] | Mair MJ, Bartsch R, Le Rhun E, et al. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours[J].Nat Rev Clin Oncol,2023,20(6): 372-389. DOI:10.1038/s41571-023-00756-z. pmid:37085569 |
| [20] | Alapan Y, Yasa O, Schauer O, et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery[J].Sci Robot,2018,3(17): eaar4423. DOI:10.1126/scirobotics.aar4423. |
| [21] | Tang S, Zhang F, Gong H, et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery[J].Sci Robot,2020,5(43): eaba6137. DOI:10.1126/scirobotics.aba6137. |
| [22] | Zhang H, Li Z, Gao C, et al. Dual-responsive biohybrid neutrobots for active target delivery[J].Sci Robot,2021,6(52): eaaz9519. DOI:10.1126/scirobotics.aaz9519. |
| [23] | Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: the evolution of a living drug[J].Nature,2023,619(7971): 707-715. DOI:10.1038/s41586-023-06243-w. |
| [24] | Baulu E, Gardet C, Chuvin N, et al. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives[J].Sci Adv,2023,9(7): eadf3700. DOI:10.1126/sciadv.adf3700. |
| [25] | Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles[J].Nat Rev Clin Oncol,2023,20(1): 33-48. DOI:10.1038/s41571-022-00699-x. |
| [26] | Alsaiari SK, Qutub SS, Sun S, et al. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy[J].Sci Adv,2021,7(4): eabe7174. DOI:10.1126/sciadv.abe7174. |
| [27] | Akolpoglu MB, Alapan Y, Dogan NO, et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery[J].Sci Adv,2022,8(28): eabo6163. DOI:10.1126/sciadv.abo6163. |
| [28] | Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins[J].Cell,2022,185(2): 250-265.e16. DOI:10.1016/j.cell.2021.12.021. pmid:35021064 |
| [29] | Zhang F, Li Z, Duan Y, et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule[J].Sci Robot,2022,7(70): eabo4160. DOI:10.1126/scirobotics.abo4160. |
| [30] | Berger S, Lächelt U, Wagner E. Dynamic carriers for therapeutic RNA delivery[J].Proc Natl Acad Sci U S A,2024,121(11): e2307799120. DOI:10.1073/pnas.2307799120. |
| [31] | Madigan V, Zhang F, Dahlman JE. Drug delivery systems for CRISPR-based genome editors[J].Nat Rev Drug Discov,2023,22(11): 875-894. DOI:10.1038/s41573-023-00762-x. pmid:37723222 |
| [32] | Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents[J].Cell,2022,185(15): 2806-2827. DOI:10.1016/j.cell.2022.03.045. pmid:35798006 |
| [33] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J].国际肿瘤学杂志,2024,51(6): 354-358. DOI:10.3760/cma.j.cn371439-20240318-00061. |
| [1] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛.结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
| [2] | 韩涛, 贾沛沛, 鲁静.iRhom1、iRhom2、TNF-α水平对宫颈癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 158-162. |
| [3] | 李志远, 贾秀红.铜死亡在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 163-168. |
| [4] | 欧阳苏瑞, 孙梦颖, 唐桩, 李进, 何敬东.瘤内免疫注射药物及药物递送载体的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 169-175. |
| [5] | 王智颖, 盛立军.外周血标志物在非小细胞肺癌免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 180-185. |
| [6] | 王菲菲, 赵守香, 李颖, 王涛, 郭琴, 田胜南, 蔡晓珊.气球状细胞黑色素瘤肝转移1例[J]. 国际肿瘤学杂志, 2025, 52(3): 190-192. |
| [7] | 邢辉, 谭莹, 王秀珍, 李瑞, 刘霞.NLR、TNF-α水平对巨块型肝癌患者TACE联合微波消融治疗效果的预测分析[J]. 国际肿瘤学杂志, 2025, 52(2): 101-106. |
| [8] | 王熙博, 田宝文, 陈士巧.Breg细胞在肿瘤免疫逃逸中的机制及相关治疗靶点[J]. 国际肿瘤学杂志, 2025, 52(2): 107-112. |
| [9] | 叶永英, 邹艳, 陈天明, 吴伟莉.时钟基因Period家族在头颈鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(2): 113-118. |
| [10] | 陈丹蕾, 邓隽军, 李淼.循环肿瘤细胞在肺癌中的临床应用进展[J]. 国际肿瘤学杂志, 2025, 52(2): 119-123. |
| [11] | .胃癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(2): 65-66. |
| [12] | 中国临床肿瘤学会肿瘤支持与康复治疗专家委员会, 癌因性厌食诊疗中国专家共识工作组.癌因性厌食诊疗中国专家共识[J]. 国际肿瘤学杂志, 2025, 52(2): 67-78. |
| [13] | 王智宝, 李广现, 张昕昕, 崔伟, 张微.MRI联合血清lncRNA KCNQ1OT1、miR-204-5p对乳腺癌腋窝淋巴结转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(2): 89-93. |
| [14] | 姬海涛, 王延峰, 刘永成, 郝楠.基于生物信息学分析DHCR7在胃癌中的表达及临床意义[J]. 国际肿瘤学杂志, 2025, 52(2): 94-100. |
| [15] | .食管癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(1): 1-2. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||