


国际肿瘤学杂志››2025,Vol. 52››Issue (6): 388-391.doi:10.3760/cma.j.cn371439-20250225-00066
收稿日期:2025-02-25修回日期:2025-03-19出版日期:2025-06-08发布日期:2025-06-26通讯作者:乌新林 E-mail:wuxinlin@126.com基金资助:
Received:2025-02-25Revised:2025-03-19Online:2025-06-08Published:2025-06-26Contact:Wu Xinlin E-mail:wuxinlin@126.comSupported by:
摘要:
结直肠癌肝转移是一个复杂的生物学过程,涉及多种机制和细胞类型的相互作用,包括肿瘤干细胞性状的自我更新及动态获得;结直肠癌细胞代谢发生特征性改变,以满足转移过程中的能量需求;上皮间质转化促进原位结直肠癌细胞迁移至循环系统成为循环肿瘤细胞,并外渗至门脉系统完成播种、增殖及形成转移灶;肝脏微环境中的驻留细胞和免疫细胞协调免疫反应,诱导转移性肝脏肿瘤的发生。进一步分析结直肠癌肝转移的相关分子机制,以期针对这些分子机制开发新型治疗药物,从而改善患者的预后。
王勇, 乌新林. 结直肠癌肝转移的相关分子机制[J]. 国际肿瘤学杂志, 2025, 52(6): 388-391.
Wang Yong, Wu Xinlin. Related molecular mechanisms of liver metastasis from colorectal cancer[J]. Journal of International Oncology, 2025, 52(6): 388-391.
| [1] | 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2024,46(3): 221-231. DOI:10.3760/cma.j.cn112152-20240119-00035. |
| [2] | Higa T, Nakayama KI. Cell cycle heterogeneity and plasticity of colorectal cancer stem cells[J].Cancer Sci,2024,115(5): 1370-1377. DOI:10.1111/cas.16117. |
| [3] | Radu P, Zurzu M, Tigora A, et al. The impact of cancer stem cells in colorectal cancer[J].Int J Mol Sci,2024,25(8): 4140. DOI:10.3390/ijms25084140. |
| [4] | Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective[J].Chem Soc Rev,2020,49(22): 7856-7878. DOI:10.1039/d0cs00379d. |
| [5] | Fumagalli A, Oost KC, Kester L, et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer[J].Cell Stem Cell,2020,26(4): 569-578.e7. DOI:10.1016/j.stem.2020.02.008. pmid:32169167 |
| [6] | Moorman A, Benitez EK, Cambulli F, et al. Progressive plasticity during colorectal cancer metastasis[J].Nature,2025,637(8047): 947-954. DOI:10.1038/s41586-024-08150-0. |
| [7] | Heinz MC, Peters NA, Oost KC, et al. Liver colonization by colorectal cancer metastases requires YAP-controlled plasticity at the micrometastatic stage[J].Cancer Res,2022,82(10): 1953-1968. DOI:10. 1158/0008-5472.CAN-21-0933. pmid:35570706 |
| [8] | Qin R, Fan X, Huang Y, et al. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance[J].Transl Oncol,2024,50: 102156. DOI:10.1016/j.tranon.2024.102156. |
| [9] | Kuo CC, Ling HH, Chiang MC, et al. Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit[J].Theranostics,2019,9(9): 2526-2540. DOI:10.7150/thno.32915. |
| [10] | Kita M, Fujiwara-Tani R, Kishi S, et al. Role of creatine shuttle in colorectal cancer cells[J].Oncotarget,2023,14: 485-501. DOI:10.18632/oncotarget.28436. pmid:37204253 |
| [11] | Huang Y, Wang F, Lin X, et al. Nuclear VCP drives colorectal cancer progression by promoting fatty acid oxidation[J].Proc Natl Acad Sci U S A,2023,120(41): e2221653120. DOI:10.1073/pnas.2221653120. |
| [12] | Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer[J].Int J Mol Sci,2023,24(19): 14815. DOI:10.3390/ijms241914815. |
| [13] | Bustamante A, Baritaki S, Zaravinos A, et al. Relationship of signaling pathways between RKIP expression and the inhibition of EMT-inducing transcription factors SNAIL1/2, TWIST1/2 and ZEB1/2[J].Cancers (Basel),2024,16(18): 3180. DOI:10.3390/cancers16183180. |
| [14] | Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J].J Hematol Oncol,2022,15(1): 129. DOI:10.1186/s13045-022-01347-8. |
| [15] | Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through Wnt/β-catenin signaling pathway in tumor cells[J].Pathol Res Pract,2024,263: 155683. DOI:10.1016/j.prp.2024.155683. |
| [16] | Liu H, Li D, Sun L, et al. Interaction of lncRNA miR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression[J].Mol Cancer,2022,21(1): 74. DOI:10.1186/s12943-022-01555-3. |
| [17] | Lei ZN, Teng QX, Koya J, et al. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis[J].Front Immunol,2024,15: 1417201. DOI:10.3389/fimmu.2024.1417201. |
| [18] | Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating tumor cells: how far have we come with mining these seeds of metastasis?[J].Cancers (Basel),2024,16(4): 816. DOI:10.3390/cancers16040816. |
| [19] | Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice[J].Signal Transduct Target Ther,2024,9(1): 226. DOI:10.1038/s41392-024-01938-6. |
| [20] | Gkountela S, Castro-Giner F, Szczerba BM, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding[J].Cell,2019,176(1/2): 98-112.e14. DOI:10.1016/j.cell.2018.11.046. |
| [21] | Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circula-ting tumor cell-mediated colorectal cancer metastasis[J].Mol Cancer,2019,18(1): 64. DOI:10.1186/s12943-019-0976-4. |
| [22] | Andryszkiewicz W, Misiąg P, Karwowska A, et al. Cancer metastases to the liver: mechanisms of tumor cell colonization[J].Pharmaceuticals (Basel),2024,17(9): 1251. DOI:10.3390/ph17091251. |
| [23] | Li J, Liu XG, Ge RL, et al. The ligation between ERMAP, galectin-9 and dectin-2 promotes kupffer cell phagocytosis and antitumor immunity[J].Nat Immunol,2023,24(11): 1813-1824. DOI:10.1038/s41590-023-01634-7. pmid:37813965 |
| [24] | Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, et al. Role of liver sinusoidal endothelial cells in liver diseases[J].Nat Rev Gastroenterol Hepatol,2021,18(6): 411-431. DOI:10.1038/s41575-020-00411-3. pmid:33589830 |
| [25] | Fan X, Meng M, Li B, et al. Brevilin A is a potent anti-metastatic CRC agent that targets the VEGF-IL6-STAT3 axis in the HSCs-CRC interplay[J].J Transl Med,2023,21(1): 260. DOI:10.1186/s12967-023-04087-6. |
| [26] | Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J].J Hematol Oncol,2020,13(1): 156. DOI:10.1186/s13045-020-00991-2. |
| [27] | Chen Z, Zhang G, Ren X, et al. Cross-talk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer[J].Cancer Res,2023,83(21): 3544-3561. DOI:10.1158/0008-5472.CAN-23-0193. |
| [28] | Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J].Cancer Cell,2021,39(5): 708-724.e11. DOI:10.1016/j.ccell.2021.03.004. pmid:33798472 |
| [29] | 高凡, 王萍, 杜超, 等. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J].国际肿瘤学杂志,2024,51(6): 376-381. DOI:10. 3760/cma.j.cn371439-20240429-00065. |
| [1] | 钟啸, 李步托, 王琳琳.ALK阳性NSCLC脑转移放疗的研究进展[J]. 国际肿瘤学杂志, 2025, 52(6): 374-378. |
| [2] | 曾倩倩, 向红, 付丽君.趋化因子CX3CL1/CX3CR1在裸鼠卵巢癌腹腔转移中的作用[J]. 国际肿瘤学杂志, 2025, 52(5): 282-287. |
| [3] | 郭海洋, 洪永刚, 郝立强.铁死亡在结直肠癌中的作用及研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 319-324. |
| [4] | .结直肠癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(4): 195-196. |
| [5] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛.结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
| [6] | 王菲菲, 赵守香, 李颖, 王涛, 郭琴, 田胜南, 蔡晓珊.气球状细胞黑色素瘤肝转移1例[J]. 国际肿瘤学杂志, 2025, 52(3): 190-192. |
| [7] | 王智宝, 李广现, 张昕昕, 崔伟, 张微.MRI联合血清lncRNA KCNQ1OT1、miR-204-5p对乳腺癌腋窝淋巴结转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(2): 89-93. |
| [8] | 詹海峰, 谭子煊, 王文学, 耿嘉蔚.节律基因在结直肠癌发生发展和时辰疗法中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 60-64. |
| [9] | 韦伟, 蔡曌颖, 钱亚云.通关藤联合XELOX方案促进人结直肠癌HCT116细胞双硫死亡的作用[J]. 国际肿瘤学杂志, 2024, 51(9): 545-555. |
| [10] | 詹海峰, 王文学, 耿嘉蔚.晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. |
| [11] | 李志伟, 翟春宝.中药多酚类成分抗结直肠癌作用研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 526-531. |
| [12] | 孟繁明.伊尼妥单抗联合卡培他滨治疗曲妥珠单抗经治的HER2阳性晚期乳腺癌1例[J]. 国际肿瘤学杂志, 2024, 51(8): 538-541. |
| [13] | 刘琴, 张强强, 杨继元, 胡艳.晚期前列腺癌双侧乳腺和腋窝淋巴结转移1例[J]. 国际肿瘤学杂志, 2024, 51(7): 478-480. |
| [14] | 王盈, 刘楠, 郭兵.抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
| [15] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||
