


国际肿瘤学杂志››2025,Vol. 52››Issue (5): 319-324.doi:10.3760/cma.j.cn371439-20250328-00054
收稿日期:2025-03-28修回日期:2025-04-03出版日期:2025-05-08发布日期:2025-06-24通讯作者:郝立强 E-mail:hao_liqiang@139.com基金资助:
Guo Haiyang, Hong Yonggang, Hao Liqiang(
)
Received:2025-03-28Revised:2025-04-03Online:2025-05-08Published:2025-06-24Contact:Hao Liqiang E-mail:hao_liqiang@139.comSupported by:
摘要:
结直肠癌(CRC)是全球高发的消化系统恶性肿瘤之一,其发病率和死亡率近年持续攀升。虽然多种治疗手段不断发展,但晚期CRC预后仍不理想,迫切需要探索新的分子机制和治疗策略。铁死亡是一种依赖铁离子和脂质过氧化的程序性细胞死亡方式,在肿瘤发生发展及治疗抵抗中具有重要作用,激活铁死亡可显著抑制肿瘤细胞生长。进一步探索铁死亡在CRC发生发展及治疗中的作用机制,可为CRC相关基础与临床研究提供参考。
郭海洋, 洪永刚, 郝立强. 铁死亡在结直肠癌中的作用及研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 319-324.
Guo Haiyang, Hong Yonggang, Hao Liqiang. Role and research progress of ferroptosis in colorectal cancer[J]. Journal of International Oncology, 2025, 52(5): 319-324.
| [1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3): 229-263. DOI:10.3322/caac.21834. |
| [2] | Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J].JAMA,2021,325(7): 669-685. DOI:10. 1001/jama.2021.0106. pmid:33591350 |
| [3] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J].国际肿瘤学杂志,2024,51(9): 601-605. DOI:10.3760/cma.j.cn371439-20240522-00100. |
| [4] | Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J].Cell Death Dis,2020,11(2): 88. DOI:10.1038/s41419-020-2298-2. |
| [5] | Deng L, He S, Guo N, et al. Molecular mechanisms of ferroptosis and relevance to inflammation[J].Inflamm Res,2023,72(2): 281-299. DOI:10.1007/s00011-022-01672-1. |
| [6] | Wang S, Guo Q, Zhou L, et al. Ferroptosis: a double-edged sword[J].Cell Death Discov,2024,10(1): 265. DOI:10.1038/s41420-024-02037-9. |
| [7] | Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group[J].N Engl J Med,2000,343(13): 905-914. DOI:10.1056/NEJM200 009283431302. |
| [8] | Wang Y, Zhang Z, Sun W, et al. Ferroptosis in colorectal cancer: potential mechanisms and effective therapeutic targets[J].Biomed Pharmacother,2022,153: 113524. DOI:10.1016/j.biopha.2022. 113524. |
| [9] | Yan H, Talty R, Aladelokun O, et al. Ferroptosis in colorectal cancer: a future target?[J].Br J Cancer,2023,128(8): 1439-1451. DOI:10.1038/s41416-023-02149-6. |
| [10] | Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions[J].Cancer Cell,2024,42(4): 513-534. DOI:10.1016/j.ccell. 2024.03.011. pmid:38593779 |
| [11] | Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J].Cell,2022,185(14): 2401-2421. DOI:10.1016/j.cell.2022.06.003 pmid:35803244 |
| [12] | Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting[J].Biochim Biophys Acta Rev Cancer,2021, 1876( 1): 188556. DOI:10.1016/j.bbcan. 2021.188556. |
| [13] | Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J].Nature,2015,520(7545): 57-62. DOI:10.1038/nature14344. |
| [14] | Zhao Y, Ma R, Wang C, et al. CAPG interference induces apoptosis and ferroptosis in colorectal cancer cells through the P53 pathway[J].Mol Cell Probes,2023,71: 101919. DOI:10.1016/j.mcp. 2023.101919. |
| [15] | Ming T, Lei J, Peng Y, et al. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis[J].Phytother Res,2024,38(8): 3954-3972. DOI:10.1002/ptr.8258. pmid:38837315 |
| [16] | Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J].Nat Cell Biol,2020,22(2): 225-234. DOI:10.1038/s41556-020-0461-8. pmid:32029897 |
| [17] | Han WM, Hong YX, Xiao GS, et al. NMDARs activation regulates endothelial ferroptosis via the PP2A-AMPK-HMGB1 axis[J].Cell Death Discov,2024,10(1): 34. DOI:10.1038/s41420-023-01794-3. |
| [18] | Yi J, Zhu J, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J].Proc Natl Acad Sci U S A,2020,117(49): 31189-31197. DOI:10.1073/pnas.2017152117. |
| [19] | Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy[J].Cancer Res,2021,81(24): 6233-6245. DOI:10.1158/0008-5472.Can-21-1547. pmid:34711611 |
| [20] | Ma S, Meng Z, Chen R, et al. The hippo pathway: biology and pathophysiology[J].Annu Rev Biochem,2019,88: 577-604. DOI:10.1146/annurev-biochem-013118-111829. pmid:30566373 |
| [21] | Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J].Nature,2019,572(7769): 402-406. DOI:10.1038/s41586-019-1426-6. |
| [22] | Ou C, Sun Z, Li S, et al. Dual roles of yes-associated protein (YAP) in colorectal cancer[J].Oncotarget,2017,8(43): 75727-75741. DOI:10.18632/oncotarget.20155. pmid:29088905 |
| [23] | Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc-and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J].Sci Rep,2018,8(1): 968. DOI:10.1038/s41598-018-19213-4. |
| [24] | Sun Y, Deng R, Zhang C. Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC‑27[J].Mol Med Rep,2020,22(4): 2826-2832. DOI:10.3892/mmr.2020.11376. pmid:32945484 |
| [25] | Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J].Front Pharmacol,2018,9: 1371. DOI:10.3389/fphar.2018.01371. pmid:30524291 |
| [26] | Zheng C, Wang C, Sun D, et al. Structure-activity relationship study of RSL3-based GPX4 degraders and its potential noncovalent optimization[J].Eur J Med Chem,2023,255: 115393. DOI:10. 1016/j.ejmech.2023.115393. |
| [27] | Yang J, Mo J, Dai J, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J].Cell Death Dis,2021,12(11): 1079. DOI:10.1038/s41419-021-04367-3. |
| [28] | Zhang Y, Song Q, Zhang Y, et al. Iron-based nanovehicle delivering fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma[J].Int J Nanomedicine,2024,19: 91-107. DOI:10.2147/ijn.S441112. |
| [29] | Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors[J].Cell Death Discov,2022,8(1): 501. DOI:10.1038/s41420-022-01297-7. |
| [30] | Zoetemelk M, Ramzy GM, Rausch M, et al. Drug-drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its activity in colorectal carcinoma treatment[J].Molecules,2020,25(11): 2614. DOI:10.3390/molecules25112614. |
| [31] | Liu J, Bi K, Yang R, et al. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future[J].Int J Radiat Biol,2020,96(11): 1329-1338. DOI:10.1080/09553002.2020.1807641. |
| [32] | Zheng Y, Sun L, Guo J, et al. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy[J].Cancer Commun,2023,43(10): 1071-1096. DOI:10.1002/cac2.12487. |
| [33] | Guo XW, Lei RE, Zhou QN, et al. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature[J].BMC Cancer,2023,23(1): 773. DOI:10.1186/s12885-023-11277-4. |
| [34] | Zhou X, Kandalai S, Hossain F, et al. Tumor microbiome metabolism:A game changer in cancer development and therapy[J].Front Oncol,2022,12: 933407. DOI:10.3389/fonc.2022.933407. |
| [35] | Singhal R, Mitta SR, Das NK, et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J].J Clin Invest,2021,131(12): 143691. DOI:10.1172/jci143691. |
| [36] | Chun Y, Kim J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J].Int J Mol Sci,2021,22(18): 9765. DOI:10.3390/ijms22189765. |
| [37] | Yu Z, Tong S, Wang C, et al. PPy@Fe3O4nanoparticles inhibit the proliferation and metastasis of CRC via suppressing the NF-κ B signaling pathway and promoting ferroptosis[J].Front Bioeng Biotechnol,2022,10: 1001994. DOI:10.3389/fbioe.2022.1001994. |
| [38] | Li Y, Chen J, Xia Q, et al. Photothermal Fe3O4nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy[J].J Nanobiotechnology,2024,22(1): 630. DOI:10. 1186/s12951-024-02909-3. |
| [39] | Dai SM, Li FJ, Long HZ, et al. Relationship between miRNA and ferroptosis in tumors[J].Front Pharmacol,2022,13: 977062. DOI:10.3389/fphar.2022.977062. |
| [40] | Yang G, Qian B, He L, et al. Application prospects of ferroptosis in colorectal cancer[J].Cancer Cell Int,2025,25(1): 59. DOI:10.1186/s12935-025-03641-0. |
| [41] | Elrebehy MA, Abdelghany TM, Elshafey MM, et al. miR-509-5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11[J].Pathol Res Pract,2023,247: 154557. DOI:10.1016/j.prp.2023. 154557. |
| [42] | Zhang Z, Huang Q, Yu L, et al. The role of miRNA in tumor immune escape and miRNA-based therapeutic strategies[J].Front Immunol,2021,12: 807895. DOI:10.3389/fimmu.2021.807895. |
| [43] | Fan H, Ai R, Mu S, et al. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2[J].Bioengineered,2022,13(5): 12021-12029. DOI:10.1080/21655979.2022.2054194. pmid:35599631 |
| [44] | Wang T, Liang S, Li Y, et al. Downregulation of lncRNA SLC7A11-AS1 decreased the NRF2/SLC7A11 expression and inhibited the progression of colorectal cancer cells[J].PeerJ,2023,11: e15216. DOI:10.7717/peerj.15216. |
| [45] | Han Y, Gao X, Wu N, et al. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2[J].Cell Death Dis,2022,13(8): 742. DOI:10. 1038/s41419-022-05192-y. |
| [46] | Li Q, Li K, Guo Q, et al. CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis[J].Environ Toxicol,2023,38(5): 981-989. DOI:10.1002/tox.23670. |
| [47] | Zhang W, Liu Y, Liao Y, et al. GPX4, ferroptosis, and diseases[J].Biomed Pharmacother,2024,174: 116512. DOI:10.1016/j.biopha.2024.116512. |
| [48] | Huang Y, Yang W, Yang L, et al. Nrf2 inhibition increases sensitivity to chemotherapy of colorectal cancer by promoting ferroptosis and pyroptosis[J].Sci Rep,2023,13(1): 14359. DOI:10.1038/s41598-023-41490-x. |
| [49] | Wang J, Wu N, Peng M, et al. Ferritinophagy: research advance and clinical significance in cancers[J].Cell Death Discov,2023,9(1): 463. DOI:10.1038/s41420-023-01753-y. |
| [50] | Ding K, Liu C, Li L, et al. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism[J].Chin Med J (Engl),2023,136(21): 2521-2537. DOI:10.1097/cm9.000000 0000002533. |
| [51] | Dai G, Wang D, Ma S, et al. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin[J].Phytomedicine,2022,102: 154149. DOI:10.1016/j.phymed.2022.154149. |
| [52] | Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer[J].Antioxidants (Basel),2022,11(12): 2444. DOI:10.3390/antiox11122444. |
| [53] | He J, Ding H, Li H, et al. Intra-tumoral expression of SLC7A11 is associated with immune microenvironment, drug resistance, and prognosis in cancers: a pan-cancer analysis[J].Front Genet,2021,12: 770857. DOI:10.3389/fgene.2021.770857. |
| [54] | Hendricks JM, Doubravsky CE, Wehri E, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis[J].Cell Chem Biol,2023,30(9): 1090-1103.e7. DOI:10.1016/j.chembiol.2023.04.007. pmid:37178691 |
| [55] | Li W, Liang L, Liu S, et al. FSP1: a key regulator of ferroptosis[J].Trends Mol Med,2023,29(9): 753-764. DOI:10.1016/j.molmed. 2023.05.013. pmid:37357101 |
| [1] | 王勇, 乌新林.结直肠癌肝转移的相关分子机制[J]. 国际肿瘤学杂志, 2025, 52(6): 388-391. |
| [2] | 郑思齐, 郭婷, 王敬, 田映红, 张兴梅.适配体筛选技术及其在肿瘤治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 304-308. |
| [3] | .结直肠癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(4): 195-196. |
| [4] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛.结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
| [5] | 余洋, 唐仕敏, 杨露, 李娜.pT2-3N0M0期胸段食管鳞状细胞癌治疗策略及预后影响因素研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 43-47. |
| [6] | 詹海峰, 谭子煊, 王文学, 耿嘉蔚.节律基因在结直肠癌发生发展和时辰疗法中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 60-64. |
| [7] | 韦伟, 蔡曌颖, 钱亚云.通关藤联合XELOX方案促进人结直肠癌HCT116细胞双硫死亡的作用[J]. 国际肿瘤学杂志, 2024, 51(9): 545-555. |
| [8] | 詹海峰, 王文学, 耿嘉蔚.晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. |
| [9] | 李志伟, 翟春宝.中药多酚类成分抗结直肠癌作用研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 526-531. |
| [10] | 韩艺, 张同梅, 齐菲, 张泳.肺大细胞神经内分泌癌临床分子诊断和治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 468-473. |
| [11] | 张蕊, 褚衍六.基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
| [12] | 高凡, 王萍, 杜超, 褚衍六.肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
| [13] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝.癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
| [14] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟.铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
| [15] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||