心理压力与肿瘤进展及抗肿瘤疗效的相关性

陈英翠, 王俊

百度开云体育app(山东省医学科学院)学报 ›› 2025, Vol. 46 ›› Issue (6) : 368-377.

PDF(622 KB)
PDF(622 KB)
百度开云体育app(山东省医学科学院)学报 ›› 2025, Vol. 46 ›› Issue (6) : 368-377. DOI: 10.3969/j.issn.2097-0005.2025.06.009
综述

心理压力与肿瘤进展及抗肿瘤疗效的相关性

作者信息 +

Correlation of psychological stress with tumor progression and efficacy of antitumor therapy

Author information +
文章历史 +

摘要

心理压力对人类日常生活和身心健康产生极大的负面影响。随着传统生物医学模式向生物⁃心理⁃社会医学模式转变,恶性肿瘤患者的心理状态日益受到关注。患者常因肿瘤进展、死亡恐惧、经济负担、癌痛及抗肿瘤治疗不良反应而面临巨大的心理压力。长期心理压力造成的慢性应激会通过神经内分泌和交感神经系统引起相关激素和神经递质的释放及特定受体的激活,进而加速肿瘤进展,包括促进肿瘤增殖和转移,诱发炎症反应,引起肠道菌群失调,导致昼夜节律及代谢紊乱以及影响基因组的稳定性等;同时通过抑制肿瘤免疫及诱导耐药对抗肿瘤疗效产生负性影响。本文对心理压力与肿瘤进展和抗肿瘤疗效的相关性和潜在机制进行综述,以期为肿瘤患者心理压力的早期评估与干预以及肿瘤患者个体化治疗提供依据,为提高抗肿瘤治疗效果提供新思路。

Abstract

Psychological stress significantly impacts human life and health. With the transition of the medical model from the traditional biomedical approach to the "bio-psycho-social" model, the psychological state of patients with malignant tumors is increasingly garnering attention. Patients with malignant tumors often face substantial psychological stress due to fears of tumor progression and mortality, financial burdens, cancer-related pain, and adverse effects from antineoplastic therapy. Chronic stress caused long-term psychological pressure can accelerate tumor progression through neuroendocrine pathways and the activation of the sympathetic nervous system, leading to the release of related hormones and neurotransmitters, activation of specific receptors, promotion of tumor proliferation and metastasis, induction of inflammatory responses, dysbiosis of gut microbiota, disruption of circadian rhythms and metabolism, as well as affecting genomic stability. Moreover, it negatively impacts the efficacy of antitumor therapy by suppressing tumor immunity and inducing drug resistance. This article systematically reviews the correlation and potential mechanisms between psychological stress and tumor progression, as well as the efficacy of antitumor therapy. It aims to provide a basis for the early assessment and intervention of psychological stress in cancer patients, as well as to offer insights into personalized treatment for cancer patients, thereby improving the efficacy of antitumor therapy.

关键词

心理压力 / 慢性应激 / 激素 / 肿瘤进展 / 抗肿瘤疗效

Key words

psychological stress / chronic stress / hormones / tumor progression / the efficacy of antitumor therapy

引用本文

导出引用
陈英翠, 王俊. 心理压力与肿瘤进展及抗肿瘤疗效的相关性[J]. 百度开云体育app(山东省医学科学院)学报. 2025, 46(6): 368-377 https://doi.org/10.3969/j.issn.2097-0005.2025.06.009
Yingcui CHEN, Jun WANG. Correlation of psychological stress with tumor progression and efficacy of antitumor therapy[J]. Journal of ShanDong First Medical University&ShanDong Academy of Medical Sciences. 2025, 46(6): 368-377 https://doi.org/10.3969/j.issn.2097-0005.2025.06.009

参考文献

[1] Ma YT, Kroemer G. The cancer-immune dialogue in the context of stress[J]. Nat Rev Immunol202424(4): 264.
[2] Agorastos A, Chrousos GP. The neuroendocrinology of stress: the stress-related continuum of chronic disease development[J]. Mol Psychiatry202227(1): 502.
[3] Batty GD, Russ TC, Stamatakis E, et al. Psychological distress in relation to site specific cancer mortality: pooling of unpublished data from 16 prospective cohort studies[J]. BMJ2017356: j108.
[4] Ding XT, Zhao F, Zhu MY, et al. A systematic review and meta-analysis of interventions to reduce perceived stress in breast cancer patients[J]. Complement Ther Clin Pract202454: 101803.
[5] Lynch J, Goodhart F, Saunders Y, et al. Screening for psychological distress in patients with lung cancer: results of a clinical audit evaluating the use of the patient distress thermometer[J]. Support Care Cancer201019(2): 193.
[6] Muffly LS, Hlubocky FJ, Khan N, et al. Psychological morbidities in adolescent and young adult blood cancer patients during curative-intent therapy and early survivorship[J]. Cancer2016122(6): 954.
[7] Mitchell AJ, Chan M, Bhatti H, et al. Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies[J]. Lancet Oncol201112(2): 160.
[8] Steel Z, Marnane C, Iranpour C, et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013[J]. Int J Epidemiol201443(2): 476.
[9] Haykin H, Rolls A. The neuroimmune response during stress: a physiological perspective[J]. Immunity202154(9): 1933.
[10] Rao R, Androulakis IP. Allostatic adaptation and personalized physiological trade-offs in the circadian regulation of the HPA axis: a mathematical modeling approach[J]. Sci Rep20199(1): 11212.
[11] Feng ZH, Liu LX, Zhang C, et al. Chronic restraint stress attenuates p53 function and promotes tumorigenesis[J]. Proc Natl Acad Sci U S A2012109(18): 7013.
[12] Vazquez A, Bond EE, Levine AJ, et al. The genetics of the p53 pathway, apoptosis and cancer therapy[J]. Nat Rev Drug Discov20087(12): 979.
[13] Zubeldia-Plazaola A, Recalde-Percaz L, Moragas N, et al. Glucocorticoids promote transition of ductal carcinoma in situ to invasive ductal carcinoma by inducing myoepithelial cell apoptosis[J]. Breast Cancer Res201820(1): 65.
[14] Obradovi? MMS, Hamelin B, Manevski N, et al. Glucocorticoids promote breast cancer metastasis[J]. Nature2019567(7749): 540.
[15] Cui Y, Han XY, Liu HT, et al. Impact of endogenous glucocorticoid on response to immune checkpoint blockade in patients with advanced cancer[J]. Front Immunol202314: 1081790.
[16] Cui B, Luo YY, Tian PF, et al. Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells[J]. J Clin Invest2019129(3): 1030.
[17] Qian WK, Lv SF, Li J, et al. Norepinephrine enhances cell viability and invasion, and inhibits apoptosis of pancreatic cancer cells in a notch?1?dependent manner[J]. Oncol Rep201840(5): 3015.
[18] Shan T, Cui XJ, Li W, et al. Novel regulatory program for norepinephrine-induced epithelial-mesenchymal transition in gastric adenocarcinoma cell lines[J]. Cancer Sci2014105(7): 847.
[19] Bu SX, Wang Q, Sun JY, et al. Melatonin suppresses chronic restraint stress-mediated metastasis of epithelial ovarian cancer via NE/AKT/β-catenin/SLUG axis[J]. Cell Death Dis202011(8): 644.
[20] Jang HJ, Boo HJ, Lee HJ, et al. Chronic stress facilitates lung tumorigenesis by promoting exocytosis of IGF2 in lung epithelial cells[J]. Cancer Res201676(22): 6607.
[21] Cheng Y, Gao XH, Li XJ, et al. Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway[J]. Oncogene201837(22): 2953.
[22] Lin XH, Liu HH, Hsu SJ, et al. Norepinephrine-stimulated HSCs secrete sFRP1 to promote HCC progression following chronic stress via augmentation of a Wnt16B/β-catenin positive feedback loop[J]. J Exp Clin Cancer Res202039(1): 64.
[23] Zhang X, Zhang Y, He ZY, et al. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2[J]. Cell Death Dis201910(11): 788.
[24] Moreno-Smith M, Lu CH, Shahzad MMK, et al. Editor's note: dopamine blocks stress-mediated ovarian carcinoma growth[J]. Clin Cancer Res202127(15): 4451.
[25] Ji HY, Liu N, Li J, et al. Oxytocin involves in chronic stress-evoked melanoma metastasis via β-arrestin 2-mediated ERK signaling pathway[J]. Carcinogenesis201940(11): 1395.
[26] Mankarious A, Dave F, Pados G, et al. The pro-social neurohormone oxytocin reverses the actions of the stress hormone cortisol in human ovarian carcinoma cells in vitro [J]. Int J Oncol201648(5): 1805.
[27] Tikk K, Sookthai D, Fortner RT, et al. Circulating prolactin and in situ breast cancer risk in the European EPIC cohort: a case-control study[J]. Breast Cancer Res201517(1): 49.
[28] Barcus CE, Keely PJ, Eliceiri KW, et al. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells[J]. J Biol Chem2013288(18): 12722.
[29] Esteban F, Mu?oz M, González-Moles MA, et al. A role for substance P in cancer promotion and progression: a mechanism to counteract intracellular death signals following oncogene activation or DNA damage[J].Cancer Metastasis Rev200625(1): 137.
[30] Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and Consequences[J]. Immunity201951(1): 27.
[31] Mikocka-Walus A, Pittet V, Rossel JB, et al. Symptoms of depression and anxiety are independently associated with clinical recurrence of inflammatory bowel disease[J]. Clin Gastroenterol Hepatol201614(6): 829.
[32] Yang SY, Li Y, Zhang YR, et al. Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression[J]. Cytokine Growth Factor Rev202480: 24.
[33] Antoni MH, Lutgendorf SK, Blomberg B, et al. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics[J]. Biol Psychiatry201271(4): 366.
[34] Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis[J]. Neuropsychopharmacology201136(12): 2452.
[35] Fang XJ, Hong YL, Dai L, et al. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis[J]. Mol Carcinog201756(11): 2434.
[36] Shahzad MMK, Arevalo JM, Armaiz-Pena GN, et al. Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis[J]. J Biol Chem2010285(46): 35462.
[37] Moraes RM, Elefteriou F, Anbinder AL. Response of the periodontal tissues to β-adrenergic stimulation[J]. Life Sci2021281: 119776.
[38] Shang GS, Liu L, Qin YW. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition[J]. Oncol Lett201713(6): 4657.
[39] Zhou J, Zheng ST, Liu T, et al. IL-1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelial-mesenchymal transition and activating NF-κB signaling pathway[J]. J Cell Biochem2018119(8): 7040.
[40] Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science2015350(6264): 1079.
[41] Weng MT, Chiu YT, Wei PY, et al. Microbiota and gastrointestinal cancer[J]. J Formos Med Assoc2019118 : S32.
[42] Murakami T, Kamada K, Mizushima K, et al. Changes in intestinal motility and gut microbiota composition in a rat stress model[J]. Digestion201795(1): 55.
[43] Wong ML, Inserra A, Lewis MD, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition[J]. Mol Psychiatry201621(6): 797.
[44] Pearson-Leary J, Zhao C, Bittinger K, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats[J]. Mol Psychiatry202025(5): 1068.
[45] Wei LN, Li Y, Tang WJ, et al. Chronic unpredictable mild stress in rats induces colonic inflammation[J]. Front Physiol201910: 1228.
[46] Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer[J]. Cell Death Differ201926(11): 2447.
[47] Ma C, Han MJ, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science2018360(6391): eaan5931.
[48] Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol201616(6): 341.
[49] Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats[J]. Psychoneuroendocrinology201237(11): 1885.
[50] Xu DB, Gao J, Gillilland M 3, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats[J]. Gastroenterology, 2014, 146(2): 484.
[51] Riquelme E, Zhang Y, Zhang LL, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell2019178(4): 795.
[52] Hsiao FH, Jow GM, Kuo WH, et al. The effects of psychotherapy on psychological well-being and diurnal cortisol patterns in breast cancer survivors[J]. Psychother Psychosom201281(3): 173.
[53] Sephton SE, Sapolsky RM, Kraemer HC, et al. Diurnal cortisol rhythm as a predictor of breast cancer survival[J]. J Natl Cancer Inst200092(12): 994.
[54] Sephton SE, Lush E, Dedert EA, et al. Diurnal cortisol rhythm as a predictor of lung cancer survival[J]. Brain Behav Immun201330: S163.
[55] Weinrib AZ, Sephton SE, Degeest K, et al. Diurnal cortisol dysregulation, functional disability, and depression in women with ovarian cancer[J]. Cancer2010116(18): 4410.
[56] Papagiannakopoulos T, Bauer MR, Davidson SM, et al. Circadian rhythm disruption promotes lung tumorigenesis[J]. Cell Metab201624(2): 324.
[57] Gu X, Xing L, Shi G, et al. The circadian mutation PER2S662G is linked to cell cycle progression and tumorigenesis[J]. Cell Death Differ201219(3): 397.
[58] Chen PW, Hsu WH, Chang A, et al. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment[J]. Cancer Discov202010(3): 371.
[59] Chen YX, Gao QY, Zou TH, et al. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: a multicentre, double-blinded, randomised controlled study[J]. Lancet Gastroenterol Hepatol20205(3): 267.
[60] Flint MS, Baum A, Episcopo B, et al. Chronic exposure to stress hormones promotes transformation and tumorigenicity of 3T3 mouse fibroblasts[J]. Stress201316(1): 114.
[61] Flint MS, Bovbjerg DH. DNA damage as a result of psychological stress: implications for breast cancer[J]. Breast Cancer Res201214(5): 320.
[62] Flaherty RL, Owen M, Fagan-Murphy A, et al. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer[J]. Breast Cancer Res201719(1): 35.
[63] Aboalela N, Lyon D, Elswick RKJ, et al. Perceived stress levels, chemotherapy, radiation treatment and tumor characteristics are associated with a persistent increased frequency of somatic chromosomal instability in women diagnosed with breast cancer: a one year longitudinal study[J]. PLoS One201510(7): e0133380.
[64] Choi J, Fauce SR, Effros RB. Reduced telomerase activity in human T lymphocytes exposed to cortisol[J]. Brain Behav Immun200822(4): 600.
[65] Hara MR, Kovacs JJ, Whalen EJ, et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1[J]. Nature2011477(7364): 349.
[66] Zhang H, Yang Y, Cao Y, et al. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation[J]. Biomed Pharmacother2024175: 116609.
[67] Chan KL, Poller WC, Swirski FK, et al. Central regulation of stress-evoked peripheral immune responses[J]. Nat Rev Neurosci202324(10): 591.
[68] Nissen MD, Sloan EK, Mattarollo SR. β-adrenergic signaling impairs antitumor CD8+ T-cell responses to B-cell lymphoma immunotherapy[J]. Cancer Immunol Res20186(1): 98.
[69] Muthuswamy R, Okada NJ, Jenkins FJ, et al. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues[J]. Brain Behav Immun201762: 78.
[70] Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer[J]. Cancer Res201070(18): 7042.
[71] Saul AN, Oberyszyn TM, Daugherty C, et al. Chronic stress and susceptibility to skin cancer[J]. J Natl Cancer Inst200597(23): 1760.
[72] Hou N, Zhang X, Zhao LY, et al. A novel chronic stress-induced shift in the Th1 to Th2 response promotes colon cancer growth[J]. Biochem Biophys Res Commun2013439(4): 471.
[73] Frick LR, Arcos MLB, Rapanelli M, et al. Chronic restraint stress impairs T-cell immunity and promotes tumor progression in mice[J]. Stress200912(2): 134.
[74] Curtin NM, Boyle NT, Mills KHG, et al. Psychological stress suppresses innate IFN-gamma production via glucocorticoid receptor activation: reversal by the anxiolytic chlordiazepoxide[J]. Brain Behav Immun200923(4): 535.
[75] Li H, Chen L, Zhang Y, et al. Chronic stress promotes lymphocyte reduction through TLR2 mediated PI3K signaling in a β-arrestin 2 dependent manner[J]. J Neuroimmunol2011233(1/2): 73.
[76] Li H, Zhao J, Chen M, et al. Toll-like receptor 9 is required for chronic stress-induced immune suppression[J]. Neuroimmunomodulation201421(1): 1.
[77] Colon-Echevarria CB, Lamboy-Caraballo R, Aquino-Acevedo AN, et al. Neuroendocrine regulation of tumor-associated immune cells[J]. Front Oncol20199: 1077.
[78] Laumont CM, Banville AC, Gilardi M, et al. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities[J]. Nat Rev Cancer202222(7): 414.
[79] Terao R, Murata A, Sugamoto K, et al. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin and R-limonene[J]. Food Funct201910(1): 38.
[80] Lutgendorf SK, Lamkin DM, DeGeest K, et al. Depressed and anxious mood and T-cell cytokine expressing populations in ovarian cancer patients[J]. Brain Behav Immun200822(6): 890.
[81] Bower JE, Shiao SL, Sullivan P, et al. Prometastatic molecular profiles in breast tumors from socially isolated women[J]. JNCI Cancer Spectr20182(3): pky029.
[82] I?igo-Marco I, Alonso MM. Destress and do not suppress: targeting adrenergic signaling in tumor immunosuppression[J]. J Clin Invest2019129(12): 5086.
[83] Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, et al. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth[J]. Oncotarget20156(6): 4266.
[84] Huang X, Le W, Chen Q, et al. Suppression of the innate cancer-killing activity in human granulocytes by stress reaction as a possible mechanism for affecting cancer development[J]. Stress202023(1): 87.
[85] Yang H, Xia L, Chen J, et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity[J]. Nat Med201925(9): 1428.
[86] Sommershof A, Scheuermann L, Koerner J, et al. Chronic stress suppresses anti-tumor TCD8+ responses and tumor regression following cancer immunotherapy in a mouse model of melanoma[J]. Brain Behav Immun201765: 140.
[87] Le CP, Nowell CJ, Kim-Fuchs C, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination[J]. Nat Commun20167: 10634.
[88] Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters[J]. Nature2007446(7137): 749.
[89] Reeder A, Attar M, Nazario L, et al. Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage[J]. Br J Cancer2015112(9): 1461.
[90] Woods-Burnham L, Cajigas-Du Ross CK, Love A, et al. Glucocorticoids induce stress oncoproteins associated with therapy-resistance in african American and European American prostate cancer cells[J]. Sci Rep20188(1): 15063.
[91] Karvonen H, Arjama M, Kaleva L, et al. Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness[J]. Cell Death Dis202011(9): 790.
[92] Yao HR, Duan ZH, Wang MH, et al. Adrenaline induces chemoresistance in HT-29 colon adenocarcinoma cells[J]. Cancer Genet Cytogenet2009190(2): 81.
[93] Pu J, Bai DN, Yang X, et al. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155[J]. Biochem Biophys Res Commun2012428(2): 210.
[94] ?Yao H, Duan Z, Wang M, et al. Adrenaline induces chemoresistance in HT-29 colon adenocarcinoma cells [J]. Cancer Genet Cytogenet2009190(2): 81.
[95] Wei B, Sun XY, Geng ZJ, et al. Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade[J]. Biomaterials2016105: 89.
[96] Kawahara T, Ide H, Kashiwagi E, et al. Silodosin inhibits the growth of bladder cancer cells and enhances the cytotoxic activity of cisplatin via Elk1 inactivation[J]. Am J Cancer Res20155(10): 2959.
[97] Nilsson MB, Sun H, Diao L, et al. Stress hormones promote EGFR inhibitor resistance in NSCLC: implications for combinations with β-blockers[J]. Sci Transl Med20179(415): eaao4307.
[98] Chang CH, Lee CH, Ko JC, et al. Effect of β-blocker in treatment-na?ve patients with advanced lung adenocarcinoma receiving first-generation EGFR-TKIs[J]. Front Oncol202010: 583529.
[99] Zhou Z, Cao Y, Yang Y, et al. METTL3-mediated m6A modification of lnc KCNQ1OT1 promotes doxorubicin resistance in breast cancer by regulating miR-103a-3p/MDR1 axis[J]. Epigenetics202318(1): 2217033.
[100] Liu J, Deng GH, Zhang J, et al. The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models[J]. Psychoneuroendocrinology201552: 130.
[101] Xie J, Wang XY, Ge H, et al. Cx32 mediates norepinephrine-promoted EGFR-TKI resistance in a gap junction-independent manner in non-small-cell lung cancer[J]. J Cell Physiol2019234(12): 23146.

基金

山东省自然科学基金(ZR202102190539)

PDF(622 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map