


国际肿瘤学杂志››2025,Vol. 52››Issue (10): 633-636.doi:10.3760/cma.j.cn371439-20241108-00108
收稿日期:2024-11-08修回日期:2025-09-18出版日期:2025-10-08发布日期:2025-11-12通讯作者:贾军梅 E-mail:jiajunmei1972@163.comReceived:2024-11-08Revised:2025-09-18Online:2025-10-08Published:2025-11-12Contact:Jia Junmei E-mail:jiajunmei1972@163.com摘要:
癌症恶病质是一种复杂的多因素疾病,可以导致骨骼肌质量显著下降。微RNA(miRNA)是一种非编码RNA,与癌症恶病质肌萎缩的发展密切相关。研究表明,miRNA通过调控各种信号通路,在癌症恶病质肌萎缩的发生发展中发挥重要作用,但其介导癌症恶病质肌萎缩的机制尚未完全明确。系统探讨miRNA在癌症恶病质肌萎缩中的作用,可为癌症恶病质肌萎缩患者的精准化治疗提供有益参考。
樊羽羽, 贾军梅. 微RNA调节癌症恶病质肌萎缩信号通路的研究进展[J]. 国际肿瘤学杂志, 2025, 52(10): 633-636.
Fan Yuyu, Jia Junmei. Research progress on the signaling pathways regulated by microRNAs in cancer cachexia muscle atrophy[J]. Journal of International Oncology, 2025, 52(10): 633-636.
| [1] | Sakaguchi T, Maeda K, Takeuchi T, et al. Low handgrip strength as a marker of severity in the diagnostic criteria for cancer cachexia[J].Clin Nutr ESPEN,2024,64: 435-440. DOI:10.1016/j.clnesp.2024.10.162. pmid:39489299 |
| [2] | Freire PP, Fernandez GJ, Cury SS, et al. The pathway to cancer cachexia: microRNA-regulated networks in muscle wasting based on integrative meta-analysis[J].Int J Mol Sci,1962,20(8): 1962. DOI:10.3390/ijms20081962. |
| [3] | Sannicandro AJ, McDonagh B, Goljanek-Whysall K. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia[J].Curr Opin Clin Nutr Metab Care,2020,23(3): 157-163. DOI:10.1097/MCO.0000000000000645. |
| [4] | Mirzoev TM. Skeletal muscle recovery from disuse atrophy: protein turnover signaling and strategies for accelerating muscle regrowth[J].Int J Mol Sci,2020,21(21): 7940. DOI:10.3390/ijms21217940. |
| [5] | Vainshtein A, Sandri M. Signaling pathways that control muscle mass[J].Int J Mol Sci,2020,21(13): 4759. DOI:10.3390/ijms21134759. |
| [6] | Cheng QQ, Mao SL, Yang LN, et al. Fuzheng Xiaoai decoction 1 ameliorated cancer cachexia-induced muscle atrophy via Akt-mTOR pathway[J].J Ethnopharmacol,2023,303: 115944. DOI:10.1016/j.jep.2022.115944. |
| [7] | Gomes JLP, Tobias GC, Fernandes T, et al. Effects of aerobic exercise training on MyomiRs expression in cachectic and non-cachectic cancer mice[J].Cancers (Basel),2021,13(22): 5728. DOI:10.3390/cancers13225728. |
| [8] | Goldbraikh D, Neufeld D, Eid-Mutlak Y, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J].EMBO Rep,2020,21(4): e48791. DOI:10.15252/embr.201948791. |
| [9] | Wang R, Kumar B, Doud EH, et al. Skeletal muscle-specific over-expression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations[J].Mol Ther Nucleic Acids,2022,28: 231-248. DOI:10.1016/j.omtn.2022.03.009. |
| [10] | Chen R, Yuan W, Zheng Y, et al. Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy[J].J Nanobiotechnology,2022,20(1): 304. DOI:10.1186/s12951-022-01508-4. |
| [11] | Xie K, Xiong H, Xiao W, et al. Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia[J].Cancer Cell Int,2021,21(1): 627. DOI:10.1186/s12935-021-02332-w. |
| [12] | Santos JMO, Peixoto da Silva S, Bastos MMSM, et al. Decoding the role of inflammation-related microRNAs in cancer cachexia: a study using HPV16-transgenic mice and in silico approaches[J].J Physiol Biochem,2022,78(2): 439-455. DOI:10.1007/s13105-021-00866-1. pmid:35298788 |
| [13] | Kuang JX, Shen Q, Zhang RQ, et al. Carnosol attenuated atrophy of C2C12 myotubes induced by tumour-derived exosomal miR-183-5p through inhibiting Smad3 pathway activation and keeping mitochondrial respiration[J].Basic Clin Pharmacol Toxicol,2022,131(6): 500-513. DOI:10.1111/bcpt.13795. |
| [14] | Miao C, Zhang W, Feng L, et al. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia[J].Mol Ther Nucleic Acids,2021,24: 923-938. DOI:10.1016/j.omtn.2021.04.015. |
| [15] | Okugawa Y, Toiyama Y, Hur K, et al. Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients[J].J Cachexia Sarcopenia Muscle,2019,10(3): 536-548. DOI:10.1002/jcsm.12403. pmid:31091026 |
| [16] | Hughes DC, Goodman CA, Baehr LM, et al. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple[J].Am J Physiol Cell Physiol,2023,325(6): C1567-C1582. DOI:10.1152/ajpcell.00457.2023. |
| [17] | Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J].Cells,2020,9(9): 1970. DOI:10.3390/cells9091970. |
| [18] | Qiu L, Chen W, Wu C, et al. Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling[J].Biochem Biophys Res Commun,2020,533(4): 831-837. DOI:10.1016/j.bbrc.2020.09.066. |
| [19] | Hu Y, Hu Y, Zhang S, et al. Tumor-derived miR-203a-3p potentiates muscle wasting by inducing muscle ferroptosis in pancreatic cancer[J].Cancer Lett,2025,614: 217523. DOI:10.1016/j.canlet.2025.217523. |
| [20] | Gallot YS, Bohnert KR. Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy[J].Int J Mol Sci,2021,22(5): 2567. DOI:10.3390/ijms22052567. |
| [21] | Bohnert KR, Gallot YS, Sato S, et al. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia[J].FASEB J,2016,30(9): 3053-3068. DOI:10.1096/fj.201600250RR. pmid:27206451 |
| [22] | He WA, Calore F, Londhe P, et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7[J].Proc Natl Acad Sci USA,2014,111(12): 4525-4529. DOI:10.1073/pnas.1402714111. pmid:24616506 |
| [23] | Freire PP, Cury SS, Lopes LO, et al. Decreased miR-497-5p suppresses IL-6 induced atrophy in muscle cells[J].Cells,2021,10(12): 3527. DOI:10.3390/cells10123527. |
| [1] | 王梦菊, 王霞.白术内酯Ⅱ对结肠癌小鼠的抗肿瘤作用及免疫调节机制[J]. 国际肿瘤学杂志, 2025, 52(9): 545-553. |
| [2] | 李鹏, 张双, 刘华锋, 纪娜, 候向坤, 席奥航, 宗建海.基于kV正交图像引导的头部肿瘤伽玛刀无痛面模分次治疗的摆位误差分析研究[J]. 国际肿瘤学杂志, 2025, 52(9): 554-559. |
| [3] | 吴松友, 王刚, 王文玲, 董洪敏, 陈唯唯, 李小凯, 陈望花, 左凯.直肠癌盆腔调强放疗中腹围对肠道受照剂量体积及急性肠道毒性影响的前瞻性队列研究[J]. 国际肿瘤学杂志, 2025, 52(9): 566-575. |
| [4] | 邱可欣, 李梦真, 国浩然, 凡梦思, 闫莉.老年晚期卵巢癌患者不同手术方式的预后分析[J]. 国际肿瘤学杂志, 2025, 52(9): 576-582. |
| [5] | 刘美, 胡玉崇, 李凤桐, 朝乐门, 柳檬, 亢琳琳.SHCBP1在恶性肿瘤中的作用机制及临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(9): 583-586. |
| [6] | 澈根, 乌日汗, 朱恬恬, 东丽.非小细胞肺癌中cGAS-STING信号通路的作用机制及其靶向治疗策略[J]. 国际肿瘤学杂志, 2025, 52(9): 587-591. |
| [7] | 程红蕾, 王体, 兰志东, 巩合义.临床指标在食管癌新辅助治疗疗效预测中的价值[J]. 国际肿瘤学杂志, 2025, 52(9): 592-597. |
| [8] | 海亚楠, 鲍文芳, 申屠航笑, 陈敬德.dMMR/MSI-H转移性结直肠癌免疫治疗耐药机制及耐药后治疗进展[J]. 国际肿瘤学杂志, 2025, 52(9): 598-602. |
| [9] | 宋美娇, 张锡泉, 沈庆林.原发灶不明的转移性癌1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(9): 606-608. |
| [10] | 中国临床肿瘤学会肿瘤支持与康复治疗专业委员会, 中国抗癌协会癌症康复与姑息治疗专业委员会, 肿瘤药物相关性肝损伤诊疗指南工作组.肿瘤药物相关性肝损伤诊疗指南(2025年版)[J]. 国际肿瘤学杂志, 2025, 52(8): 470-483. |
| [11] | 中国研究型医院学会放射肿瘤学专业委员会, 河北省数理医学学会, 天津市精准医疗学会.初诊肺癌合并阻塞性肺炎临床诊疗专家共识[J]. 国际肿瘤学杂志, 2025, 52(8): 484-494. |
| [12] | 李广鑫, 权慧娟, 高志娟, 王肖君, 李良, 董谦, 苗永涛, 刘东生.血清HAMP、SPP1、RGS2水平与胃癌患者临床病理特征的相关性及对术后复发或转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(8): 502-507. |
| [13] | 陈俊, 唐丹丹, 周雨馨, 谭玉婷, 李泓澜, 徐群, 项永兵.1990—2021年中国中青年结直肠癌疾病负担时间趋势分析[J]. 国际肿瘤学杂志, 2025, 52(8): 508-516. |
| [14] | 黄进发, 郑联坵, 吴金票, 刘德挺, 陈惠玲.老年肝癌患者TACE术后感染风险预测模型构建[J]. 国际肿瘤学杂志, 2025, 52(8): 517-522. |
| [15] | 张百红, 岳红云.靶向肿瘤转移的新策略[J]. 国际肿瘤学杂志, 2025, 52(8): 528-531. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||
