


国际肿瘤学杂志››2025,Vol. 52››Issue (8): 528-531.doi:10.3760/cma.j.cn371439-20240811-00089
收稿日期:2024-08-11修回日期:2024-09-10出版日期:2025-08-08发布日期:2025-09-15通讯作者:岳红云 E-mail:yhyophthalmologist@163.com基金资助:
Zhang Baihong1, Yue Hongyun2(
)
Received:2024-08-11Revised:2024-09-10Online:2025-08-08Published:2025-09-15Contact:Yue Hongyun E-mail:yhyophthalmologist@163.comSupported by:
摘要:
肿瘤相关死亡往往与肿瘤转移相关。转移过程包括肿瘤细胞获得播散特质、休眠苏醒和远处生长。改变细胞播散特质、维持和杀灭休眠细胞、编辑转移前微环境和重构肿瘤特征可能阻断肿瘤转移。贝伐珠单抗、地舒单抗和西仑吉肽等药物已经应用于临床。基于血液检查的肿瘤筛查联合人工智能将为临床治疗肿瘤提供新的靶向转移策略。
张百红, 岳红云. 靶向肿瘤转移的新策略[J]. 国际肿瘤学杂志, 2025, 52(8): 528-531.
Zhang Baihong, Yue Hongyun. Novel therapeutic strategies: targeting cancer metastasis[J]. Journal of International Oncology, 2025, 52(8): 528-531.
| [1] | Gerstberger S, Jiang Q, Ganesh K. Metastasis[J].Cell,2023,186(8): 1564-1579. DOI:10.1016/j.cell.2023.03.003. pmid:37059065 |
| [2] | Ganesh K, Massagué J. Targeting metastatic cancer[J].Nat Med,2021,27(1): 34-44. DOI:10.1038/s41591-020-01195-4. pmid:33442008 |
| [3] | Ganesh K. Uncoupling metastasis from tumorigenesis[J].N Engl J Med,2023,388(7): 657-659. DOI:10.1056/NEJMcibr2213497. |
| [4] | Coban B, Bergonzini C, Zweemer AJM, et al. Metastasis: crosstalk between tissue mechanics and tumour cell plasticity[J].Br J Cancer,2021,124(1): 49-57. DOI:10.1038/s41416-020-01150-7. |
| [5] | Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy[J].Nat Cancer,2023,4(8): 1063-1082. DOI:10.1038/s43018-023-00595-y. |
| [6] | Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy[J].Nat Rev Drug Discov,2020,19(1): 39-56. DOI:10.1038/s41573-019-0044-1. pmid:31601994 |
| [7] | Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer[J].Science,2023,379(6632): eaaw3835. DOI:10.1126/science.aaw3835. |
| [8] | Crunkhorn S. Blocking breast cancer metastasis[J].Nat Rev Drug Discov,2022,21(3): 180. DOI:10.1038/d41573-022-00026-0. |
| [9] | Nair PR, Danilova L, Gómez-de-Mariscal E, et al. MLL1 regulates cytokine-driven cell migration and metastasis[J].Sci Adv,2024,10(11): eadk0785. DOI:10.1126/sciadv.adk0785. |
| [10] | Richbourg NR, Irakoze N, Kim H, et al. Outlook and opportunities for engineered environments of breast cancer dormancy[J].Sci Adv,2024,10(10): eadl0165. DOI:10.1126/sciadv.adl0165. |
| [11] | Correia AL. Locally sourced: site-specific immune barriers to metastasis[J].Nat Rev Immunol,2023,23(8): 522-538. DOI:10.1038/s41577-023-00836-2. pmid:36750616 |
| [12] | Xia F, Ma Y, Chen K. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis[J].Sci Adv,2022,8(35): eabo7792. DOI:10.1126/sciadv.abo7792. |
| [13] | Baek AE. Metastatic dormancy needs STING[J].Sci Signal,2023,16(780): eadi1372. DOI:10.1126/scisignal.adi1372. |
| [14] | Micalizzi DS, Che D, Nicholson BT, et al. Targeting breast and pancreatic cancer metastasis using a dual-cadherin antibody[J].Proc Natl Acad Sci U S A,2022,119(43): e2209563119. DOI:10.1073/pnas.2209563119. |
| [15] | Gkountela S, Castro-Giner F, Szczerba BM, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding[J].Cell,2019,176(1/2): 98-112.e14. DOI:10.1016/j.cell.2018.11.046. |
| [16] | Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J].Cell,2022,185(8): 1356-1372.e26. DOI:10.1016/j.cell.2022.02.027. pmid:35395179 |
| [17] | Zhang F, Guo Z, Li Z, et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis[J].Sci Adv,2024,10(24): eadn6157. DOI:10.1126/sciadv.adn6157. |
| [18] | Yu Y, Cheng Q, Ji X, et al. Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis[J].Sci Adv,2022,8(49): eadd3599. DOI:10.1126/sciadv.add3599. |
| [19] | Kaczanowska S, Kaplan RN. Mapping the switch that drives the pre-metastatic niche[J].Nat Cancer,2020,1(6): 577-579. DOI:10. 1038/s43018-020-0076-9. |
| [20] | Sharma P, Goswami S, Raychaudhuri D, et al. Immune checkpoint therapy-current perspectives and future directions[J].Cell,2023,186(8): 1652-1669. DOI:10.1016/j.cell.2023.03.006. pmid:37059068 |
| [21] | Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation—have anti-inflammatory therapies come of age?[J].Nat Rev Clin Oncol,2021,18(5): 261-279. DOI:10.1038/s41571-020-00459-9. |
| [22] | Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond[J].Nat Rev Drug Discov,2023,22(6): 476-495. DOI:10.1038/s41573-023-00671-z. |
| [23] | Hofbauer LC, Bozec A, Rauner M, et al. Novel approaches to target the microenvironment of bone metastasis[J].Nat Rev Clin Oncol,2021,18(8): 488-505. DOI:10.1038/s41571-021-00499-9. pmid:33875860 |
| [24] | Liu F, Wu Q, Dong Z, et al. Integrins in cancer: emerging mechanisms and therapeutic opportunities[J].Pharmacol Ther,2023,247: 108458. DOI:10.1016/j.pharmthera.2023.108458. |
| [25] | Whiteley AE, Ma D, Wang L, et al. Breast cancer exploits neural signaling pathways for bone-to-meninges metastasis[J].Science,2024,384(6702): eadh5548. DOI:10.1126/science.adh5548. |
| [26] | Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance[J].Nat Rev Cancer,2022,22(3): 157-173. DOI:10.1038/s41568-021-00427-0. pmid:35013601 |
| [27] | Demicco M, Liu XZ, Leithner K, et al. Metabolic heterogeneity in cancer[J].Nat Metab,2024,6(1): 18-38. DOI:10.1038/s42255-023-00963-z. pmid:38267631 |
| [28] | Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis[J].Nat Cancer,2024,5(1): 16-29. DOI:10.1038/s43018-023-00702-z. |
| [29] | Battaglia TW, Mimpen IL, Traets JJH, et al. A pan-cancer analysis of the microbiome in metastatic cancer[J].Cell,2024,187(9): 2324-2335. DOI:10.1016/j.cell.2024.03.021. pmid:38599211 |
| [30] | Wang Y, Narasimamurthy R, Qu M, et al. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis[J].Nat Cancer,2024,5(4): 546-556. DOI:10.1038/s43018-024-00759-4. |
| [31] | Zahalka AH, Frenette PS. Nerves in cancer[J].Nat Rev Cancer,2020,20(3): 143-157. DOI:10.1038/s41568-019-0237-2. pmid:31974491 |
| [32] | Cambria E, Coughlin MF, Floryan MA, et al. Linking cell mechanical memory and cancer metastasis[J].Nat Rev Cancer,2024,24(3): 216-228. DOI:10.1038/s41568-023-00656-5. pmid:38238471 |
| [33] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J].国际肿瘤学杂志,2024,51(6): 354-358. DOI:10.3760/cma.j.cn371439-20240318-00061. |
| [34] | Ho D. Artificial intelligence in cancer therapy[J].Science,2020,367(6481): 982-983. DOI:10.1126/science.aaz3023. pmid:32108102 |
| [35] | Pan C, Schoppe O, Parra-Damas A, et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body[J].Cell,2019,179(7): 1661-1676.e19. DOI:10.1016/j.cell.2019.11.013. pmid:31835038 |
| [36] | Micalizzi DS, Sequist LV, Haber DA. Deploying blood-based cancer screening[J].Science,2024,383(6681): 368-370. DOI:10.1126/science.adk1213. pmid:38271495 |
| [1] | 中国临床肿瘤学会肿瘤支持与康复治疗专业委员会, 中国抗癌协会癌症康复与姑息治疗专业委员会, 肿瘤药物相关性肝损伤诊疗指南工作组.肿瘤药物相关性肝损伤诊疗指南(2025年版)[J]. 国际肿瘤学杂志, 2025, 52(8): 470-483. |
| [2] | 中国研究型医院学会放射肿瘤学专业委员会, 河北省数理医学学会, 天津市精准医疗学会.初诊肺癌合并阻塞性肺炎临床诊疗专家共识[J]. 国际肿瘤学杂志, 2025, 52(8): 484-494. |
| [3] | 赵芳, 姜国荣, 史淑月, 肖剑, 马少林, 李润浦.阿特珠单抗联合安罗替尼治疗晚期非小细胞肺癌疗效观察[J]. 国际肿瘤学杂志, 2025, 52(8): 495-501. |
| [4] | 李广鑫, 权慧娟, 高志娟, 王肖君, 李良, 董谦, 苗永涛, 刘东生.血清HAMP、SPP1、RGS2水平与胃癌患者临床病理特征的相关性及对术后复发或转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(8): 502-507. |
| [5] | 陈俊, 唐丹丹, 周雨馨, 谭玉婷, 李泓澜, 徐群, 项永兵.1990—2021年中国中青年结直肠癌疾病负担时间趋势分析[J]. 国际肿瘤学杂志, 2025, 52(8): 508-516. |
| [6] | 黄进发, 郑联坵, 吴金票, 刘德挺, 陈惠玲.老年肝癌患者TACE术后感染风险预测模型构建[J]. 国际肿瘤学杂志, 2025, 52(8): 517-522. |
| [7] | 郭俊龙, 邹睿琪, 陈少强, 梁雨欣, 李菁, 雍苏南, 何玉婷, 谢小兵, 李萍.RNA m6A修饰在乳腺癌中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(8): 532-537. |
| [8] | 吴鑫, 任海朋.KRASG12C抑制剂在晚期结直肠癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(8): 538-542. |
| [9] | 刘琦, 曲国斌, 朱健, 吴凡.双能CT虚拟平扫图像代替真实平扫图像在光子与质子放疗剂量计算中的可行性研究[J]. 国际肿瘤学杂志, 2025, 52(7): 401-408. |
| [10] | 李晓萱, 夏志鹏, 栾如梅, 万云焱, 姚周虹, 林鑫山, 林殿杰.代谢组学评估肺结节恶性风险的临床价值[J]. 国际肿瘤学杂志, 2025, 52(7): 409-413. |
| [11] | 张露莹, 梁嘉欣, 赵可雷, 袁晓晗, 刘亮博, 路平, 张桂芳, 张敏.驱动基因阴性晚期NSCLC一线免疫及其联合治疗进展后不同二线治疗策略疗效的真实世界研究[J]. 国际肿瘤学杂志, 2025, 52(7): 419-425. |
| [12] | 朱健.肿瘤质子放疗剂量学特点序言[J]. 国际肿瘤学杂志, 2025, 52(7): 432-433. |
| [13] | 吴仕章, 胡漫, 戴天缘, 李成强, 陶城, 段敬豪, 陈进琥, 白曈, 孔甜, 朱健.全中枢神经系统肿瘤1例质子放疗剂量学特点分析[J]. 国际肿瘤学杂志, 2025, 52(7): 434-440. |
| [14] | 徐渐, 段敬豪, 刘庆增, 朱健.脊索瘤质子放疗中能谱CT参数与MRI ADC变化的相关性研究[J]. 国际肿瘤学杂志, 2025, 52(7): 441-447. |
| [15] | 李成强, 王云刚, 余以珊, 吴仕章, 陶城, 马星民, 戴天缘, 段敬豪, 陈进琥, 白曈, 朱健.乳腺癌4例质子放疗剂量学特点分析[J]. 国际肿瘤学杂志, 2025, 52(7): 448-454. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||