


国际肿瘤学杂志››2025,Vol. 52››Issue (5): 315-318.doi:10.3760/cma.j.cn371439-20240910-00053
收稿日期:2024-09-10修回日期:2024-11-01出版日期:2025-05-08发布日期:2025-06-24通讯作者:朱文钿 E-mail:zq2860676@163.comZhuang Weihong1, Zhu Wentian2(
)
Received:2024-09-10Revised:2024-11-01Online:2025-05-08Published:2025-06-24Contact:Zhu Wentian E-mail:zq2860676@163.com摘要:
肝细胞癌(HCC)是常见的消化系统恶性肿瘤之一,威胁着人类生命健康。微血管侵犯(MVI)是反映HCC患者预后的重要指标,术前MVI预测并提供个体化治疗方案,对改善HCC患者远期疗效具有重要意义。众多研究基于临床特征、影像学特征、影像组学、蛋白组学和基因组学等构建了logistic回归评分模型、列线图模型、影像组学模型以及深度学习模型等多种HCC患者MVI预测模型。随着研究的不断深入,HCC患者MVI预测的准确性不断提升,也能更好地指导HCC治疗。
庄伟鸿, 朱文钿. 肝细胞癌微血管侵犯相关预测模型的研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 315-318.
Zhuang Weihong, Zhu Wentian. Research progress on prediction models related to microvascular invasion in hepatocellular carcinoma[J]. Journal of International Oncology, 2025, 52(5): 315-318.
| [1] | 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J].国际肿瘤学杂志,2024,51(7): 385-410. DOI:10.3760/cma.j.cn371439-20240415-00067. |
| [2] | Yoh T, Seo S, Taura K, et al. Surgery for recurrent hepatocellular carcinoma: achieving long-term survival[J].Ann Surg,2021,273(4): 792-799. DOI:10.1097/sla.0000000000003358. |
| [3] | Shi C, Zhao Q, Liao B, et al. Anatomic resection and wide resection margin play an important role in hepatectomy for hepatocellular carcinoma with peritumoural micrometastasis[J].ANZ J Surg,2019,89(11): E482-E486. DOI:10.1111/ans.15396. |
| [4] | Zhang XP, Chai ZT, Gao YZ, et al. Postoperative adjuvant sorafenib improves survival outcomes in hepatocellular carcinoma patients with microvascular invasion after R0 liver resection: a propensity score matching analysis[J].HPB (Oxford),2019,21(12): 1687-1696. DOI:10.1016/j.hpb.2019.04.014. |
| [5] | 中国医师协会肝癌专业委员会, 沈锋, 程树群, 等. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J].中华消化外科杂志,2024,23(2): 153-164. DOI:10.3760/cma.j.cn115610-2024 0125-00041. |
| [6] | Sheng X, Ji Y, Ren GP, et al. A standardized pathological proposal for evaluating microvascular invasion of hepatocellular carcinoma: a multicenter study by LCPGC[J].Hepatol Int,2020,14(6): 1034-1047. DOI:10.1007/s12072-020-10111-4. pmid:33369707 |
| [7] | Hong SB, Choi SH, Kim SY, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis[J].Liver Cancer,2021,10(2): 94-106. DOI:10.1159/000513704. pmid:33981625 |
| [8] | Li H, Li T, Hu J, et al. A nomogram to predict microvascular invasion in early hepatocellular carcinoma[J].J Cancer Res Ther,2021,17(3): 652-657. DOI:10.4103/jcrt.JCRT_1714_20. pmid:34269295 |
| [9] | Song L, Li J, Luo Y. The importance of a nonsmooth tumor margin and incomplete tumor capsule in predicting HCC microvascular invasion on preoperative imaging examination: a systematic review and meta-analysis[J].Clin Imaging,2021,76: 77-82. DOI:10. 1016/j.clinimag.2020.11.057. |
| [10] | Chang Y, Guo T, Zhu B, et al. A novel nomogram for predicting microvascular invasion in hepatocellular carcinoma[J].Ann Hepatol,2023,28(6): 101136. DOI:10.1016/j.aohep.2023.101136. |
| [11] | Wang Z, Cao L, Wang J, et al. A novel predictive model of microvascular invasion in hepatocellular carcinoma based on differential protein expression[J].BMC Gastroenterol,2023,23(1): 89. DOI:10.1186/s12876-023-02729-z. |
| [12] | Xin Z, Li J, Zhang H, et al. Cancer genomic alterations can be potential biomarkers predicting microvascular invasion and early recurrence of hepatocellular carcinoma[J].Front Oncol,2022,12: 783109. DOI:10.3389/fonc.2022.783109. |
| [13] | Zhang N, Wang Z, Lv J, et al. Characterization of gut microbiota and exploration of potential predictive model for hepatocellular carcinoma microvascular invasion[J].Front Med (Lausanne),2022,9: 836369. DOI:10.3389/fmed.2022.836369. |
| [14] | 董碧菁, 王莉, 刘治坤. 基于术前资料的肝细胞癌微血管侵犯风险评分模型的建立[J].中国现代医生,2024,62(4): 38-42. DOI:10.3969/j.issn.1673-9701.2024.04.010. |
| [15] | Chen S, Wang C, Gu Y, et al. Prediction of microvascular invasion and its M2 classification in hepatocellular carcinoma based on nomogram analyses[J].Front Oncol,2021,11: 774800. DOI:10. 3389/fonc.2021.774800. |
| [16] | Zhou Q, Zhou C, Yin Y, et al. Development and validation of a nomogram combining hematological and imaging features for preoperative prediction of microvascular invasion in hepatocellular carcinoma patients[J].Ann Transl Med,2021,9(5): 402. DOI:10.21037/atm-20-4695. |
| [17] | Sun SW, Liu QP, Xu X, et al. Direct comparison of four presurgical stratifying schemes for prediction of microvascular invasion in hepatocellular carcinoma by gadoxetic acid-enhanced MRI[J].J Magn Reson Imaging,2020,52(2): 433-447. DOI:10.1002/jmri. 27043. |
| [18] | Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria[J].JAMA Surg,2016,151(4): 356-363. DOI:10.1001/jamasurg.2015.4257. pmid:26579636 |
| [19] | Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction[J].JHEP Rep,2022,4(4): 100443. DOI:10.1016/j.jhepr.2022. 100443. |
| [20] | 冯源, 兰晓莉. 影像组学介绍[J].中华核医学与分子影像杂志,2023,43(1): 55-60. DOI:10.3760/cma.j.cn321828-20211130-00427. |
| [21] | 罗家佳, 李倩, 杜勇. 影像组学预测肝细胞癌微血管侵犯的研究现状[J].中国CT和MRI杂志,2024,22(2): 176-178. DOI:10.3969/j.issn.1672-5131.2024.02.054. |
| [22] | Zhang K, Zhang L, Li WC, et al. Radiomics nomogram for the prediction of microvascular invasion of HCC and patients' benefit from postoperative adjuvant TACE: a multi-center study[J].Eur Radiol,2023,33(12): 8936-8947. DOI:10.1007/s00330-023-09824-5. pmid:37368104 |
| [23] | Xiao Q, Zhu W, Tang H, et al. Ultrasound radiomics in the prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J].Heliyon,2023,9(6): e16997. DOI:10.1016/j.heliyon.2023.e16997. |
| [24] | Zhou HY, Cheng JM, Chen TW, et al. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J].Clinics,2023,78: 100264. DOI:10.1016/j.clinsp.2023.100264. |
| [25] | Sun BY, Gu PY, Guan RY, et al. Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma[J].World J Surg Oncol,2022,20(1): 189. DOI:10.1186/s12957-022-02645-8. |
| [26] | Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J].Med Image Anal,2017,42: 60-88. DOI:10.1016/j.media.2017.07.005. pmid:28778026 |
| [27] | 徐伟, 郑威, 钱炜, 等. 一种深度学习模型的研究与应用[J].计算机技术与发展,2020,30(7): 135-139. DOI:10.3969/j.issn. 1673-629X.2020.07.029. |
| [28] | van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection[J].Insights Imaging,2020,11(1): 91. DOI:10.1186/s13244-020-00887-2. |
| [29] | Wei J, Jiang H, Zeng M, et al. Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: a multi-center and prospective validation study[J].Cancers (Basel),2021,13(10): 2368. DOI:10.3390/cancers13102368. |
| [30] | Liu SC, Lai J, Huang JY, et al. Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals[J].Cancer Imaging,2021,21(1): 56. DOI:10.1186/s40644-021-00425-3. |
| [31] | Wang L, Wu M, Li R, et al. MVI-mind: a novel deep-learning strategy using computed tomography (CT)-based radiomics for end-to-end high efficiency prediction of microvascular invasion in hepatocellular carcinoma[J].Cancers (Basel),2022,14(12): 2956. DOI:10.3390/cancers14122956. |
| [1] | 刘海燕, 张超.基于CT影像加权组学评分构建非小细胞肺癌的免疫治疗疗效预测模型[J]. 国际肿瘤学杂志, 2025, 52(4): 202-208. |
| [2] | 韩双.外周实性结节Ⅰ期肺腺癌脏层胸膜侵犯的CT特征分析及预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 136-143. |
| [3] | 来瑞鹤, 滕月, 戎剑, 盛丹丹, 耿羽智, 陈建新, 蒋冲, 丁重阳, 周正扬.基于18F-FDG PET/CT原发灶影像组学的联合模型预测NSCLC淋巴结转移的价值[J]. 国际肿瘤学杂志, 2025, 52(3): 144-151. |
| [4] | 吕俊, 熊昊, 郑燕秋, 董礼.非小细胞肺癌患者放疗后肺部侵袭性真菌病发生危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(8): 493-497. |
| [5] | 莫慧敏, 蔡宇森, 张增瑞, 朱文钿.联合应用免疫检查点抑制剂在肝细胞癌合并门静脉癌栓治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 520-525. |
| [6] | 彭丹, 吕璐, 孙鹏飞.影像组学在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 532-537. |
| [7] | 中华人民共和国国家卫生健康委员会医政司.原发性肝癌诊疗指南(2024年版)[J]. 国际肿瘤学杂志, 2024, 51(7): 385-410. |
| [8] | 傅旖, 马辰莺, 张露, 周菊英.生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
| [9] | 陈琦, 徐晨阳, 王寅, 雷大鹏.高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
| [10] | 姚益新, 沈煜霖.血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
| [11] | 薛小芳, 钟玉全, 李欣阳.长非编码RNA AL445524.1相关肝细胞癌预后模型的构建及其对肝癌细胞恶性表型的影响[J]. 国际肿瘤学杂志, 2024, 51(11): 696-705. |
| [12] | 何佩霈, 杨朝凤, 李杨.肝癌肿瘤微环境与消融治疗的研究现状与展望[J]. 国际肿瘤学杂志, 2024, 51(10): 655-659. |
| [13] | 黄镇, 陈永顺.循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. |
| [14] | 徐放, 朱文钿.肝细胞癌合并微血管侵犯术后辅助治疗现状[J]. 国际肿瘤学杂志, 2023, 50(5): 304-309. |
| [15] | 曹晓辉, 于荭, 李万湖.基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||