| [1] |
Filho AM, Laversanne M, Ferlay J, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide[J].Int J Cancer,2025,156(7): 1336-1346. DOI:10.1002/ijc.35278. |
| [2] |
Jiang D, Zhang L, Liu W, et al. Trends in cancer mortality in China from 2004 to 2018: a nationwide longitudinal study[J].Cancer Commun,2021(10): 1024-1036. DOI:10.1002/cac2.12195. |
| [3] |
Hou H, Meng Z, Zhao X, et al. Survival of esophageal cancer in China: a pooled analysis on hospital-based studies from 2000 to 2018[J].Front Oncol,2019,9: 548. DOI:10.3389/fonc.2019.00548. pmid:31316913 |
| [4] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J].CA Cancer J Clin,2016,66(2): 115-132. DOI:10.3322/caac.21338. |
| [5] |
付天娇, 暴洪博, 李晨龙, 等. m6A修饰在神经胶质瘤中的研究进展[J].现代肿瘤医学,2023,31(17): 3296-3300. DOI:10.3969/j.issn.1672-4992.2023.17.028. |
| [6] |
Heck AM, Russo J, Wilusz J, et al. YTHDF2 destabilizes m6A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells[J].RNA,2020,26(6): 739-755. DOI:10.1261/rna.073502.119. |
| [7] |
刘培培, 杨梦雪, 严雪冰. m6A甲基化修饰在消化系统肿瘤中的研究进展[J].国际肿瘤学杂志,2021,48(11): 688-692. DOI:10.3760/cma.j.cn371439-20210906-00136. |
| [8] |
Frye M, Harada BT, Behm M, et al. RNA modifications modulate gene expression during development[J].Science,2018,361(6409): 1346-1349. DOI:10.1126/science.aau1646. pmid:30262497 |
| [9] |
Zhang N, Zuo Y, Peng Y, et al. Function of N6-methyladenosine modification in tumors[J].J Oncol,2021,2021: 6461552. DOI:10.1155/2021/6461552. |
| [10] |
He PC, He C. m6A RNA methylation: from mechanisms to therapeutic potential[J].EMBO J,2021,40(3): e105977. DOI:10.15252/embj.2020105977. |
| [11] |
Xue C, Chu Q, Zheng Q, et al. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine[J].Signal Transduct Target Ther,2022,7(1): 142. DOI:10.1038/s41392-022-01003-0. |
| [12] |
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J].Cell,2017,169(7): 1187-1200. DOI:10.1016/j.cell.2017.05.045. pmid:28622506 |
| [13] |
Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J].Signal Transduct Target Ther,2021,6(1): 74. DOI:10.1038/s41392-020-00450-x. |
| [14] |
Liu H, Xu Y, Yao B, et al. A novel N6-methyladenosine (m6A)- dependent fate decision for the lncRNA THOR[J].Cell Death Dis,2020,11(8): 613. DOI:10.1038/s41419-020-02833-y. |
| [15] |
Das Mandal S, Ray PS. Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins[J].Genomics,2021,113(1): 205-216. DOI:10.1016/j.ygeno.2020.12.027. |
| [16] |
Wang J, Wang J, Gu Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J].Cancer Cell Int,2020,20: 347. DOI:10.1186/s12935-020-01450-1. pmid:32742194 |
| [17] |
Jiang Y, Wan Y, Gong M, et al. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway[J].J Cell Mol Med,2020,24(11): 6137-6148. DOI:10.1111/jcmm.15228. pmid:32329191 |
| [18] |
Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J].Mol Cancer,2022,21(1): 34. DOI:10.1186/s12943-022-01522-y. pmid:35114989 |
| [19] |
Nagaki Y, Motoyama S, Yamaguchi T, et al. m6A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis[J].Genes Cells,2020,25(8): 547-561. DOI:10.1111/gtc.12792. |
| [20] |
Xue J, Xiao P, Yu X, et al. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma[J].Hum Cell,2021,34(2): 502-514. DOI:10.1007/s13577-020-00458-z. pmid:33231844 |
| [21] |
Xiao D, Fang TX, Lei Y, et al. m6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression[J].Aging,2021,13(17): 21497-21512. DOI:10.18632/aging.203490. |
| [22] |
Li J, Liu H, Dong S, et al. ALKBH5 is lowly expressed in esophageal squamous cell carcinoma and inhibits the malignant proliferation and invasion of tumor cells[J].Comput Math Methods Med,2021,2021: 1001446. DOI:10.1155/2021/1001446. |
| [23] |
李磊, 吴良绍, 吴昊, 等. 下调METTL3基因表达影响人骨肉瘤细胞增殖、凋亡和成骨分化的作用及机制探讨[J].现代肿瘤医学,2021,29(23): 4087-4092. DOI:10.3969/j.issn.1672-4992.2021.23.003. |
| [24] |
Li S, Jiang F, Chen F, et al. Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer[J].J Biochem Mol Toxicol,2022,36(1): e22922. DOI:10.1002/jbt.22922. |
| [25] |
Bley N, Schott A, Müller S, et al. IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer[J].RNA Biol,2021,18(3): 391-403. DOI:10.1080/15476286.2020.1812894. |
| [26] |
胡茹, 李东霖, 严雪冰. 甲基转移酶样蛋白14与肿瘤[J].国际肿瘤学杂志,2022,49(8): 478-483. DOI:10.3760/cma.j.cn371439-20220511-00092. |
| [27] |
Cui Y, Zhang C, Ma S, et al. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma[J].J Exp Clin Cancer Res,2021,40(1): 294. DOI:10.1186/s13046-021-02096-1. pmid:34544449 |
| [28] |
Han H, Yang C, Zhang S, et al. METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via notch signaling pathway[J].Mol Ther Nucleic Acids,2021,26: 333-346. DOI:10.1016/j.omtn.2021.07.007. |
| [29] |
Luo G, Qi Y, Lei Z, et al. A potential biomarker of esophageal squamous cell carcinoma WTAP promotes the proliferation and migration of ESCC[J].Pathol Res Pract,2022,238: 154114. DOI:10.1016/j.prp.2022.154114. |
| [30] |
Yang G, Zhang C, Dong H, et al. Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21-SlHY5 transcription factor module in UV-B signaling[J].Plant Cell,2022,34(5): 2038-2055. DOI:10.1093/plcell/koac064. |
| [31] |
Jiang J, Tang S, Xia J, et al. C9orf140, a novel Axin1-interacting protein, mediates the negative feedback loop of Wnt/β-catenin signaling[J].Oncogene,2018,37(22): 2992-3005. DOI:10.1038/s41388-018-0166-7. pmid:29531269 |
| [32] |
Dang TVT, Lee S, Cho H, et al. The LBD11-ROS feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis[J].Mol Plant,2023,16(7): 1131-1145. DOI:10.1016/j.molp.2023.05.010. pmid:37264569 |
| [33] |
Zhang L, Cao J, Dong L, et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J].Proc Natl Acad Sci U S A,2020,117(24): 13447-13456. DOI:10.1073/pnas.1921815117. |
| [34] |
Qu S, Jin L, Huang H, et al. A positive-feedback loop between HBx and ALKBH5 promotes hepatocellular carcinogenesis[J].BMC Cancer,2021,21(1): 686. DOI:10.1186/s12885-021-08449-5. pmid:34112124 |
| [35] |
Liu X, Feng M, Hao X, et al. m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1α positive feedback loop[J].Oncogene,2023,42(25): 2047-2060. DOI:10.1038/s41388-023-02704-8. pmid:37149664 |
| [36] |
Zhang Y, Liu X, Wang Y, et al. The m6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway[J].Mol Cancer,2022,21(1): 174. DOI:10.1186/s12943-022-01647-0. pmid:36056355 |
| [37] |
Zhang H, Liu Y, Wang W, et al. ALKBH5-mediated m6A modification of lincRNA LINC02551 enhances the stability of DDX24 to promote hepatocellular carcinoma growth and metastasis[J].Cell Death Dis,2022,13(11): 926. DOI:10.1038/s41419-022-05386-4. |
| [38] |
Shen W, Pu J, Zuo Z, et al. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the lncRNA PVT1[J].Cancer Cell Int,2022,22(1): 353. DOI:10.1186/s12935-022-02770-0. pmid:36376862 |
| [39] |
Zhang N, Shen Y, Li H, et al. The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability[J].Exp Mol Med,2022,54(2): 194-205. DOI:10.1038/s12276-022-00735-x. pmid:35217832 |