


Journal of International Oncology››2025,Vol. 52››Issue (3): 186-189.doi:10.3760/cma.j.cn371439-20241224-00029
• Review •Previous ArticlesNext Articles
Pu Wenxia1, Deng Zongzhuo1, Wang Peixin2, Wang Qiulan1(
)
Received:2024-12-24Revised:2025-01-29Online:2025-03-08Published:2025-04-02Contact:Wang Qiulan,Email:
Supported by:
Pu Wenxia, Deng Zongzhuo, Wang Peixin, Wang Qiulan. Research progress of the correlation between angiogenesis and osteosarcoma[J]. Journal of International Oncology, 2025, 52(3): 186-189.
| [1] | Beird HC, Bielack SS, Flanagan AM, et al. Osteosarcoma[J].Nat Rev Dis Primers,2022,8(1): 77. DOI:10.1038/s41572-022-00409-y. pmid:36481668 |
| [2] | Xu N, Kang Y, Wang W, et al. The prognostic role of CD133 expression in patients with osteosarcoma[J].Clin Exp Med,2020,20(2): 261-267. DOI:10.1007/s10238-020-00607-6. pmid:32048073 |
| [3] | 王培鑫, 赵军, 徐世红, 等. 铁死亡相关机制在骨肉瘤中的应用进展[J].国际肿瘤学杂志,2024,51(5): 308-311. DOI:10.3760/cma.j.cn371439-20240304-00052. |
| [4] | Odri GA, Tchicaya-Bouanga J, Yoon DJY, et al. Metastatic progression of osteosarcomas: a review of current knowledge of environmental versus oncogenic drivers[J].Cancers (Basel),2022,14(2): 360. DOI:10.3390/cancers14020360. |
| [5] | Sadykova LR, Ntekim AI, Muyangwa-Semenova M, et al. Epidemiology and risk factors of osteosarcoma[J].Cancer Invest,2020,38(5): 259-269. DOI:10.1080/07357907.2020.1768401. pmid:32400205 |
| [6] | Al-Abboodi M, An R, Weber M, et al. Tumor-type-dependent effects on the angiogenic abilities of endothelial cells in an in vitro rat cell model[J].Oncol Rep,2019,42(1): 350-360. DOI:10.3892/or.2019.7143. pmid:31059104 |
| [7] | Puxeddu I, Pratesi F, Ribatti D, et al. Mediators of inflammation and angiogenesis in chronic spontaneous urticaria: are they potential biomarkers of the disease?[J].Mediators Inflamm,2017,2017: 4123694. DOI:10.1155/2017/4123694. |
| [8] | Ma J, Huang H, Han Z, et al. RLN2 is a positive regulator of AKT-2-induced gene expression required for osteosarcoma cells invasion and chemoresistance[J].Biomed Res Int,2015,2015: 147468. DOI:10.1155/2015/147468. |
| [9] | Fernandez-Cortes M, Delgado-Bellido D, Oliver FJ. Vasculogenic mimicry: become an endothelial cell "but not so much"[J].Front Oncol,2019,9: 803. DOI:10.3389/fonc.2019.00803. |
| [10] | Ren HY, Shen JX, Mao XM, et al. Correlation between tumor vasculogenic mimicry and poor prognosis of human digestive cancer patients: a systematic review and meta-analysis[J].Pathol Oncol Res,2019,25(3): 849-858. DOI:10.1007/s12253-018-0496-3. |
| [11] | Yao N, Ren K, Gu XJ, et al. Identification of potential crucial genes associated with vasculogenic mimicry in human osteosarcoma based on gene expression profile[J].Neoplasma,2020,67(2): 286-295. DOI:10.4149/neo_2019_190414N329. pmid:31884799 |
| [12] | 任可, 姚楠, 吴苏稼, 等. 基于血管生成拟态相关分子MIG-7的四肢骨肉瘤预后分析及风险预测模型构建[J].肿瘤防治研究,2021,48(1): 31-37. DOI:10.3971/j.issn.1000-8578.2021.20.0521. |
| [13] | Ren K, Zhang J, Gu X, et al. Migration-inducing gene-7 independently predicts poor prognosis of human osteosarcoma and is associated with vasculogenic mimicry[J].Exp Cell Res,2018,369(1): 80-89. DOI:10.1016/j.yexcr.2018.05.008. pmid:29750896 |
| [14] | Yao N, Zhou J, Song J, et al. miR-520d-3p/MIG-7 axis regulates vasculogenic mimicry formation and metastasis in osteosarcoma[J].Neoplasma,2022,69(4): 764-775. DOI:10.4149/neo_2022_211128N1683. |
| [15] | Gao Z, Zhao GS, Lv Y, et al. Anoikis-resistant human osteosarcoma cells display significant angiogenesis by activating the Src kinase- mediated MAPK pathway[J].Oncol Rep,2019,41(1): 235-245. DOI:10.3892/or.2018.6827. |
| [16] | Zeng C, Wen M, Liu X. Fibroblast activation protein in osteosarcoma cells promotes angiogenesis via AKT and ERK signaling pathways[J].Oncol Lett,2018,15(4): 6029-6035. DOI:10.3892/ol.2018.8027. pmid:29552230 |
| [17] | Yang M, Zhang H, Gao S, et al. DEPDC1 and KIF4A synergistically inhibit the malignant biological behavior of osteosarcoma cells through hippo signaling pathway[J].J Orthop Surg Res,2023,18(1): 145. DOI:10.1186/s13018-023-03572-4. pmid:36849972 |
| [18] | Raimondi L, De Luca A, Gallo A, et al. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs[J].Carcinogenesis,2020,41(5): 666-677. DOI:10.1093/carcin/bgz130. pmid:31294446 |
| [19] | Lv J, Yuan J, Xu CJ, et al. VEGF-C/VEGFR-3/iNOS signaling in osteosarcoma MG63 cells mediates stimulatory effects on human umbilical vein endothelial cell proliferation[J].Chin Med Sci J,2021,36(1): 35-42. DOI:10.24920/003753. pmid:33853707 |
| [20] | Zhang P, Zhang J, Quan H, et al. MicroRNA-143 expression inhibits the growth and the invasion of osteosarcoma[J].J Orthop Surg Res,2022,17(1): 236. DOI:10.1186/s13018-022-03127-z. pmid:35418302 |
| [21] | Zhang L, Lv Z, Xu J, et al. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway[J].FEBS J,2018,285(7): 1359-1371. DOI:10.1111/febs.14416. pmid:29474747 |
| [22] | Xie L, Li W, Li Y. Mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX[J].J Orthop Surg Res,2024,19(1): 485. DOI:10.1186/s13018-024-04947-x. pmid:39152460 |
| [23] | Kumanishi S, Yamanegi K, Nishiura H, et al. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells[J].Int J Oncol,2019,55(1): 167-178. DOI:10.3892/ijo.2019.4811. pmid:31180533 |
| [24] | Li W, Liu J, Cai T, et al. TCF12 transcriptionally activates SPHK1 to induce osteosarcoma angiogenesis by promoting the S1P/S1PR4/STAT3 axis[J].Mol Cell Biol,2024,44(5): 178-193. DOI:10.1080/10985549.2024.2341781. pmid:38767243 |
| [25] | Ling J, Sun Y, Pan J, et al. Feedback modulation of endothelial cells promotes epithelial-mesenchymal transition and metastasis of osteosarcoma cells by von willebrand factor release[J].J Cell Biochem,2019,120(9): 15971-15979. DOI:10.1002/jcb.28875. pmid:31099074 |
| [26] | Yang J, Hu Y, Wang L, et al. Human umbilical vein endothelial cells derived-exosomes promote osteosarcoma cell stemness by activating notch signaling pathway[J].Bioengineered,2021,12(2): 11007-11017. DOI:10.1080/21655979.2021.2005220. pmid:34781817 |
| [27] | Ghalehbandi S, Yuzugulen J, Pranjol MZI, et al. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF[J].Eur J Pharmacol,2023,949: 175586. DOI:10.1016/j.ejphar.2023.175586. |
| [28] | Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges[J].Nat Rev Clin Oncol,2020,17(4): 251-266. DOI:10.1038/s41571-019-0308-z. pmid:32034288 |
| [29] | Hayashi T, Yamamoto N, Kurosawa G, et al. A novel high-throughput screening method for a human multicentric osteosarcoma-specific antibody and biomarker using a phage display-derived monoclonal antibody[J].Cancers (Basel),2022,14(23): 5829. DOI:10.3390/cancers14235829. |
| [30] | Zhao ZX, Li X, Liu WD, et al. Inhibition of growth and metastasis of tumor in nude mice after intraperitoneal injection of bevacizumab[J].Orthop Surg,2016,8(2): 234-240. DOI:10.1111/os.12236. |
| [31] | Kuo C, Kent PM, Logan AD, et al. Docetaxel, bevacizumab, and gemcitabine for very high risk sarcomas in adolescents and young adults: a single-center experience[J].Pediatr Blood Cancer,2017,64(4): 28221727. DOI:10.1002/pbc.26265. |
| [32] | Assi A, Farhat M, Hachem MCR, et al. Tyrosine kinase inhibitors in osteosarcoma: adapting treatment strategiesa[J].J Bone Oncol,2023,43: 100511. DOI:10.1016/j.jbo.2023.100511. |
| [33] | Wang BD, Yu XJ, Hou JC, et al. Bevacizumab attenuates osteosarcoma angiogenesis by suppressing MIAT encapsulated by serum-derived extracellular vesicles and facilitating miR-613-mediated GPR158 inhibition[J].Cell Death Dis,2022,13(3): 272. DOI:10.1038/s41419-022-04620-3. |
| [34] | Buttell A, Qiu W. The action and resistance mechanisms of lenvatinib in liver cancer[J].Mol Carcinog,2023,62(12): 1918-1934. DOI:10.1002/mc.23625. |
| [35] | Guo J, Zhao J, Xu Q, et al. Resistance of lenvatinib in hepatocellular carcinoma[J].Curr Cancer Drug Targets,2022,22(11): 865-878. DOI:10.2174/1568009622666220428111327. pmid:36267045 |
| [36] | Casanova M, Bautista F, Campbell-Hewson Q, et al. Regorafenib plus vincristine and irinotecan in pediatric patients with recurrent/refractory solid tumors: an innovative therapy for children with cancer study[J].Clin Cancer Res,2023,29(21): 4341-4351. DOI:10.1158/1078-0432.CCR-23-0257. |
| [37] | Liu Y, Jiang B, Li Y, et al. Effect of traditional Chinese medicine in osteosarcoma: cross-interference of signaling pathways and potential therapeutic targets[J].Medicine (Baltimore),2024,103(3): e36467. DOI:10.1097/MD.0000000000036467. |
| [38] | Li X, Lu Q, Xie W, et al. Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-catenin signaling[J].Biochem Biophys Res Commun,2018,496(2): 443-449. DOI:10.1016/j.bbrc.2018.01.052. |
| [39] | Rabelo AC, Borghesi J, Carreira ACO, et al. Calotropis procera (aiton) dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteosarcoma cells[J].Res Vet Sci,2021,138: 79-89. DOI:10.1016/j.rvsc.2021.06.005. pmid:34119813 |
| [40] | Yao N, Zhou J, Jiang Y, et al. Rhizoma paridis saponins suppresses vasculogenic mimicry formation and metastasis in osteosarcoma through regulating miR-520d-3p/MIG-7 axis[J].J Pharmacol Sci,2022,150(3): 180-190. DOI:10.1016/j.jphs.2022.08.005. pmid:36184123 |
| [41] | Zhou J, Wang L, Peng C, et al. Co-targeting tumor angiogenesis and immunosuppressive tumor microenvironment: a perspective in ethnopharmacology[J].Front Pharmacol,2022,13: 886198. DOI:10.3389/fphar.2022.886198. |
| [42] | Xiao Y, Yu TJ, Xu Y, et al. Emerging therapies in cancer metabolism[J].Cell Metab,2023,35(8): 1283-1303. DOI:10.1016/j.cmet.2023.07.006. pmid:37557070 |
| [43] | Zhu D, Li Y, Zhang Z, et al. Recent advances of nanotechnology-based tumor vessel-targeting strategies[J].J Nanobiotechnology,2021,19(1): 435. DOI:10.1186/s12951-021-01190-y. |
| [1] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan.Progress of ferroptosis-related mechanisms in osteosarcoma[J]. Journal of International Oncology, 2024, 51(5): 308-311. |
| [2] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao.Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma[J]. Journal of International Oncology, 2024, 51(4): 239-244. |
| [3] | Jiang Xi, Wu Yongcun, Liang Yan, Chu Li, Duan Yingxin, Wang Lijun, Huo Junjie.Impact of pembrolizumab combined with chemotherapy on angiogenesis and circulating endothelial cells in patients with advanced non-small cell lung cancer[J]. Journal of International Oncology, 2024, 51(2): 89-94. |
| [4] | Ma Xiaoping, Chang Junli, Sun Xingyuan, Yang Yanping.Study progression on mechanism of long non-coding RNAs regulating drug resistance in osteosarcoma[J]. Journal of International Oncology, 2023, 50(1): 51-54. |
| [5] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing.MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2[J]. Journal of International Oncology, 2022, 49(4): 193-198. |
| [6] | Li Bingliang, Yang Ya, Huang Yingli, Si Wen, Li Xingwei, Zhang Yuanmin, Bian Jichao, Chen Yu.Effects of miR-20a-5p targeting KDM6B on the proliferation, migration and invasion of osteosarcoma cells[J]. Journal of International Oncology, 2021, 48(2): 65-73. |
| [7] | Yang Xiao1, Li Si2, Peng Jin3, Wang Lin4, Wu Yilun4, Feng Ying2.Effect of plasma membrane-associated sialidase NEU3 activity on the proliferation and apoptosis of osteosarcoma MG-63 cells[J]. Journal of International Oncology, 2019, 46(4): 193-198. |
| [8] | He Qihua.Effect and mechanism of microRNA24 on cell proliferation and migration of osteosarcoma cell line U2OS[J]. Journal of International Oncology, 2017, 44(7): 490-495. |
| [9] | YUAN Yuan, LI Song-Lin, WANG Zhong-Hua, SHEN Hui-Hua, LI Wu, WANG Wei-Dong.Evodiamine inhibits apoptosis of human osteosarcoma MG-63 cells by blocking Wnt/β-catenin signaling[J]. Journal of International Oncology, 2017, 44(2): 86-90. |
| [10] | Wang Wei, Li Zhaohui, Zheng Xiaoxia, Cui Yuying.Expression of ErbB3 in osteosarcoma cell lines Saos-2 and its significance[J]. Journal of International Oncology, 2016, 43(8): 593-596. |
| [11] | WU Jin, CHEN Zhi-Da, ZENG Wen-Rong, LIN Bin, WU Xin-Yu, LIU Qing-Jun.HERG suppresses the malignant phenotypes of osteosarcoma via modulating NF-κB pathway[J]. Journal of International Oncology, 2016, 43(7): 508-514. |
| [12] | Shen Guoqi, Zhang Chunlin.Receptor tyrosine kinases in osteosarcoma and Ewing sarcoma[J]. Journal of International Oncology, 2015, 42(7): 551-553. |
| [13] | Zhang Ning, You Jianyu, Guo Weina, Zhao Baolin.Status analysis of gene therapy in osteosarcoma[J]. Journal of International Oncology, 2015, 42(1): 74-76. |
| [14] | Ren Huiwen, Yang Cheng, Su Hongwei, Li Hongwei.Predictive effect of microRNA ratio in osteosarcoma[J]. Journal of International Oncology, 2014, 41(8): 708-711. |
| [15] | YANG Cheng, SU Hong-Wei, REN Hui-Wen, LI Hong-Wei.The occurrence,development and metastasis in bone neoplasms[J]. Journal of International Oncology, 2014, 41(7): 533-536. |
| Viewed | ||||||
| Full text |
|
|||||
| Abstract |
|
|||||